M2fNet: Multi-Modal Forest Monitoring Network on Large-Scale Virtual Dataset

Forest monitoring and education are key to forest protection, education and management, which is an effective way to measure the progress of a country's forest and climate commitments. Due to the lack of a large-scale wild forest monitoring benchmark, the common practice is to train the model o...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) pp. 539 - 543
Main Authors Lu, Yawen, Huang, Yunhan, Sun, Su, Zhang, Tansi, Zhang, Xuewen, Fei, Songlin, Chen, Victor
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.03.2024
Subjects
Online AccessGet full text
DOI10.1109/VRW62533.2024.00104

Cover

Abstract Forest monitoring and education are key to forest protection, education and management, which is an effective way to measure the progress of a country's forest and climate commitments. Due to the lack of a large-scale wild forest monitoring benchmark, the common practice is to train the model on a common outdoor benchmark (e.g., KITTI) and evaluate it on real forest datasets (e.g., CanaTree100). However, there is a large domain gap in this setting, which makes the evaluation and deployment difficult. In this paper, we propose a new photorealistic virtual forest dataset and a multimodal transformer-based algorithm for tree detection and instance segmentation. To the best of our knowledge, it is the first time that a multimodal detection and segmentation algorithm is applied to a large-scale forest scenes. We believe that the proposed dataset and method will inspire the simulation, computer vision, education and forestry communities towards a more comprehensive multi-modal understanding.
AbstractList Forest monitoring and education are key to forest protection, education and management, which is an effective way to measure the progress of a country's forest and climate commitments. Due to the lack of a large-scale wild forest monitoring benchmark, the common practice is to train the model on a common outdoor benchmark (e.g., KITTI) and evaluate it on real forest datasets (e.g., CanaTree100). However, there is a large domain gap in this setting, which makes the evaluation and deployment difficult. In this paper, we propose a new photorealistic virtual forest dataset and a multimodal transformer-based algorithm for tree detection and instance segmentation. To the best of our knowledge, it is the first time that a multimodal detection and segmentation algorithm is applied to a large-scale forest scenes. We believe that the proposed dataset and method will inspire the simulation, computer vision, education and forestry communities towards a more comprehensive multi-modal understanding.
Author Lu, Yawen
Chen, Victor
Zhang, Xuewen
Zhang, Tansi
Huang, Yunhan
Sun, Su
Fei, Songlin
Author_xml – sequence: 1
  givenname: Yawen
  surname: Lu
  fullname: Lu, Yawen
  email: lu976@purdue.edu
  organization: Purdue University,Department of Computer Graphics Technology
– sequence: 2
  givenname: Yunhan
  surname: Huang
  fullname: Huang, Yunhan
  email: huan1482@purdue.edu
  organization: Purdue University,Department of Computer Graphics Technology
– sequence: 3
  givenname: Su
  surname: Sun
  fullname: Sun, Su
  email: sun931@purdue.edu
  organization: Purdue University,Department of Computer Graphics Technology
– sequence: 4
  givenname: Tansi
  surname: Zhang
  fullname: Zhang, Tansi
  email: zhan4138@purdue.edu
  organization: Purdue University,Department of Computer Graphics Technology
– sequence: 5
  givenname: Xuewen
  surname: Zhang
  fullname: Zhang, Xuewen
  email: xuewenzhang@meta.com
  organization: Meta,USA
– sequence: 6
  givenname: Songlin
  surname: Fei
  fullname: Fei, Songlin
  email: sfei@purdue.edu
  organization: Purdue University,Department of Forestry and Natural Resources
– sequence: 7
  givenname: Victor
  surname: Chen
  fullname: Chen, Victor
  email: victorchen@purdue.edu
  organization: Purdue University,Department of Computer Graphics Technology
BookMark eNotjEtOwzAUAI0EC2h7Alj4AgnPf5sdKrQgJUXiU5aV49iVRYiR4wpxeyrBajYzc4FOxzR6hC4J1ISAud4-v0sqGKspUF4DEOAnaGGU0UwAU5wbOEdNS8PGlxvcHoYSqzb1dsCrlP1UcJvGWFKO4x4fle-UP3AacWPz3lcvzg4eb2Muh2NwZ4udfJmjs2CHyS_-OUNvq_vX5UPVPK0fl7dNFSnwUnWKCUNlEEJaRrsASoOSAVxPZaeM5MLIPmgIXFpOOk2Ftlw4RnplnXaOzdDV3zd673dfOX7a_LMjIJgUkrFfxi1KJg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/VRW62533.2024.00104
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
EISBN 9798350374490
EndPage 543
ExternalDocumentID 10536563
Genre orig-research
GrantInformation_xml – fundername: U.S. Department of Agriculture (USDA)
  grantid: 20236801238992
  funderid: 10.13039/100000199
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i204t-b735926f556a32bf078076f0cd26b7964596df80f46a41b8258a45c31d7ac8cc3
IEDL.DBID RIE
IngestDate Wed Jun 05 05:40:33 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-b735926f556a32bf078076f0cd26b7964596df80f46a41b8258a45c31d7ac8cc3
PageCount 5
ParticipantIDs ieee_primary_10536563
PublicationCentury 2000
PublicationDate 2024-March-16
PublicationDateYYYYMMDD 2024-03-16
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-March-16
  day: 16
PublicationDecade 2020
PublicationTitle 2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)
PublicationTitleAbbrev VRW
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.911881
Snippet Forest monitoring and education are key to forest protection, education and management, which is an effective way to measure the progress of a country's forest...
SourceID ieee
SourceType Publisher
StartPage 539
SubjectTerms Benchmark testing
Computer vision
Computing methodologies-Artificial intelligence-Computer vision-Image segmentation / Object detection
Computing methodologies-Modeling and simulation-Simulation support systems-Simulation environments
Forestry
Three-dimensional displays
Training
Vegetation
Virtual reality
Title M2fNet: Multi-Modal Forest Monitoring Network on Large-Scale Virtual Dataset
URI https://ieeexplore.ieee.org/document/10536563
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA22C3Hlq-KbLNymzuQ1iVu1FGkHUVu7K3lCUWakpBu_3mSmPhAEd8NMYEIul3OTnHMPABfMKcEts0hSrBBVwiOhuEZGW0ytxDqzSSg8LvlwQu9mbLYWqzdaGOdcQz5z_fTY3OXb2qzSUVnMcEZi_UE6oFMUshVrrTsJ5Zm8nD48x2qekLjrw6kndp7c1354pjSQMdgG5efPWqbIS38VdN-8_-rD-O_Z7IDetzoP3n_hzi7YcNUe2Ewem8m4bR-MxtiXLlzBRlyLxrVVr7D9DNsUTmd5sGwJ4LCu4CjRwdFjDJeD08UySUrgjQoR4EIPTAa3T9dDtDZNQAuc0YB0QZjE3DPGFcHaxxIgK7jPjMVcJ90pk9x6kXnKFc113CAKRZkhuS2UEcaQA9Ct6sodAiiloQXVMenjEJtL5biPkEcFlZZ5ro5AL63K_K3tizH_XJDjP96fgK0UmcTgyvkp6Iblyp1FSA_6vAnlBy-yoZU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsNAFB20grryVfHtLNxOTeaVjFu1VE2DaFu7K_OEoiRS0o1f70zSqgiCu5AMJMzlcu6dnHMPABfMypQbZpCgWCIqU4dSyRXSymBqBFaRCULhfs57Q3o_ZuOFWL3Wwlhra_KZ7YTL-l--KfU8HJX5DGfE1x9kFawx31YkjVxrMUsojsTl6OnF1_OE-L4Ph6nYcfBf--GaUoNGdwvky9c1XJHXzrxSHf3xaxLjv79nG7S_9Xnw8Qt5dsCKLXbBenDZDNZteyDrY5fb6grW8lrUL418g81j2CRxOM2DeUMBh2UBs0AIR88-YBaOprMgKoE3svIQV7XBsHs7uO6hhW0CmuKIVkglhAnMHWNcEqycLwKihLtIG8xVUJ4ywY1LI0e5pLHyLWIqKdMkNonUqdZkH7SKsrAHAAqhaUKVT3u_xMRCWu486NGUCsMcl4egHXZl8t5MxpgsN-Toj_vnYKM36GeT7C5_OAabIUqBzxXzE9CqZnN76gG-Umd1WD8B33ek5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+Conference+on+Virtual+Reality+and+3D+User+Interfaces+Abstracts+and+Workshops+%28VRW%29&rft.atitle=M2fNet%3A+Multi-Modal+Forest+Monitoring+Network+on+Large-Scale+Virtual+Dataset&rft.au=Lu%2C+Yawen&rft.au=Huang%2C+Yunhan&rft.au=Sun%2C+Su&rft.au=Zhang%2C+Tansi&rft.date=2024-03-16&rft.pub=IEEE&rft.spage=539&rft.epage=543&rft_id=info:doi/10.1109%2FVRW62533.2024.00104&rft.externalDocID=10536563