VolRecon: Volume Rendering of Signed Ray Distance Functions for Generalizable Multi-View Reconstruction

The success of the Neural Radiance Fields (NeRF) in novel view synthesis has inspired researchers to propose neural implicit scene reconstruction. However, most existing neural implicit reconstruction methods optimize perscene parameters and therefore lack generalizability to new scenes. We introduc...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 16685 - 16695
Main Authors Ren, Yufan, Wang, Fangjinhua, Zhang, Tong, Pollefeys, Marc, Susstrunk, Sabine
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2023
Subjects
Online AccessGet full text
ISSN1063-6919
DOI10.1109/CVPR52729.2023.01601

Cover

Abstract The success of the Neural Radiance Fields (NeRF) in novel view synthesis has inspired researchers to propose neural implicit scene reconstruction. However, most existing neural implicit reconstruction methods optimize perscene parameters and therefore lack generalizability to new scenes. We introduce VolRecon, a novel generalizable implicit reconstruction method with Signed Ray Distance Function (SRDF). To reconstruct the scene with fine details and little noise, VolRecon combines projection features aggregated from multi-view features, and volume features interpolated from a coarse global feature volume. Using a ray transformer, we compute SRDF values of sampled points on a ray and then render color and depth. On DTU dataset, VolRecon outperforms SparseNeuS by about 30% in sparse view reconstruction and achieves comparable accuracy as MVSNet in full view reconstruction. Furthermore, our approach exhibits good generalization performance on the large-scale ETH3D benchmark. Code is available at https://github.com/IVRL/VolRecon/.
AbstractList The success of the Neural Radiance Fields (NeRF) in novel view synthesis has inspired researchers to propose neural implicit scene reconstruction. However, most existing neural implicit reconstruction methods optimize perscene parameters and therefore lack generalizability to new scenes. We introduce VolRecon, a novel generalizable implicit reconstruction method with Signed Ray Distance Function (SRDF). To reconstruct the scene with fine details and little noise, VolRecon combines projection features aggregated from multi-view features, and volume features interpolated from a coarse global feature volume. Using a ray transformer, we compute SRDF values of sampled points on a ray and then render color and depth. On DTU dataset, VolRecon outperforms SparseNeuS by about 30% in sparse view reconstruction and achieves comparable accuracy as MVSNet in full view reconstruction. Furthermore, our approach exhibits good generalization performance on the large-scale ETH3D benchmark. Code is available at https://github.com/IVRL/VolRecon/.
Author Pollefeys, Marc
Ren, Yufan
Susstrunk, Sabine
Zhang, Tong
Wang, Fangjinhua
Author_xml – sequence: 1
  givenname: Yufan
  surname: Ren
  fullname: Ren, Yufan
  organization: IVRL IC EPFL
– sequence: 2
  givenname: Fangjinhua
  surname: Wang
  fullname: Wang, Fangjinhua
  organization: ETH Zurich,Department of Computer Science
– sequence: 3
  givenname: Tong
  surname: Zhang
  fullname: Zhang, Tong
  organization: IVRL IC EPFL
– sequence: 4
  givenname: Marc
  surname: Pollefeys
  fullname: Pollefeys, Marc
  organization: ETH Zurich,Department of Computer Science
– sequence: 5
  givenname: Sabine
  surname: Susstrunk
  fullname: Susstrunk, Sabine
  organization: IVRL IC EPFL
BookMark eNotzs1OwkAUBeDRaCIib8BiXqB470w7P-4MCppgNFXZkml7h4wpU9OfEHx6Cbo6Z3Hy5Vyzi9hEYmyKMEMEeztfv-WZ0MLOBAg5A1SAZ2xitTUyAwkorDlnIwQlE2XRXrFJ130BgBSIypoR266bOqeyiXf82IYd8ZxiRW2IW954_h62kSqeuwN_CF3vYkl8McSyD03suG9avqRIravDjytq4i9D3YdkHWjPT2rXt8NpfMMuvas7mvznmH0uHj_mT8nqdfk8v18lQUDaJy6jsqr08XCaFqkhS5nRqFKtDYIXmS6cdN7bSnhXSK0yFKqopCxKLIxHkGM2_XMDEW2-27Bz7WGDcNSVEfIXFA5bBw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR52729.2023.01601
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9798350301298
EISSN 1063-6919
EndPage 16695
ExternalDocumentID 10204682
Genre orig-research
GrantInformation_xml – fundername: Swiss National Science Foundation
  grantid: CRSII5-180359
  funderid: 10.13039/501100001711
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i204t-a5ecdd710644b48e9e58716477810f257ba3aff9d2fab3765126bd33bc1b8f103
IEDL.DBID RIE
IngestDate Wed Aug 27 02:56:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-a5ecdd710644b48e9e58716477810f257ba3aff9d2fab3765126bd33bc1b8f103
PageCount 11
ParticipantIDs ieee_primary_10204682
PublicationCentury 2000
PublicationDate 2023-June
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.4942021
Snippet The success of the Neural Radiance Fields (NeRF) in novel view synthesis has inspired researchers to propose neural implicit scene reconstruction. However,...
SourceID ieee
SourceType Publisher
StartPage 16685
SubjectTerms 3D from multi-view and sensors
Codes
Color
Computer vision
Reconstruction algorithms
Shape
Surface reconstruction
Transformers
Title VolRecon: Volume Rendering of Signed Ray Distance Functions for Generalizable Multi-View Reconstruction
URI https://ieeexplore.ieee.org/document/10204682
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60J0_1UfHNHrwmJt08dr1WSxEspdrQW9nHbClKUrBF9Nc7u0krCoK3EMhms5uZ-b7ZeRByjZDDIOfSQZayBAmKZIGSKgpyjfstQMbWONfA4zAbTJKHaTptktV9LgwA-OAzCN2lP8s3lV47VxlKeBfpHEeNu5vnok7W2jpUGFKZTPAmPS6OxE2vGI3TLqLH0PUID10ttfhHExVvQ_ptMty8vQ4deQnXKxXqz1-FGf89vX3S-U7Xo6OtITogO1AeknaDL2kjvW9HZF5Unm6Wt7TwSomOfSM5fIhWlj4t5qhz6Vh-0DuHKt2wfTR7_s-kCG5pU6PaBYK9AvW5u0GxgHfqR92Wou2QSf_-uTcImkYLwQJnvApkCtoYxBoIjlTCQUDqeVSe8ziyKNRKMmmtMF0rFWokBAmZMowpHStu44gdk1ZZlXBCaC4BTSKSOhwi4UbLXFhASqdNxK1g0SnpuIWbLetaGrPNmp39cf-c7LnNq4OzLkgLvwQuEQas1JXf_i9WubKH
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kHvRUHxXf7sFrYtLN02u1VG1LqW3orexjtpRKItgi-uud3aQVBcFbCGSy2cfM903mQcg1Qg6FnEs6UcgCJCicOYILz4klrncK3NfKuAZ6_agzDh4n4aRKVre5MABgg8_ANZf2X74q5Mq4yvCEN5HOJahxt0OkFXGZrrVxqTAkM1GaVAlyvpfetLLBMGwifnRNl3DXVFPzf7RRsVakXSf99fvL4JGFu1oKV37-Ks347wHukcZ3wh4dbEzRPtmC_IDUK4RJq_P7dkhmWWEJZ35LM6uW6NC2ksOHaKHp83yGWpcO-Qe9M7jSiG2j4bN7kyK8pVWVahMK9gLUZu862RzeqZW6KUbbIOP2_ajVcapWC84cR7x0eAhSKUQbCI9EkEAKoWVScZz4nsZjLTjjWqeqqblAnYQwIRKKMSF9kWjfY0eklhc5HBMac0CjiLQORQSJkjxONSCpk8pLdMq8E9IwEzd9LatpTNdzdvrH_Suy0xn1utPuQ__pjOyahSxDtc5JDb8KLhAULMWl3Qpf5Qm12A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=VolRecon%3A+Volume+Rendering+of+Signed+Ray+Distance+Functions+for+Generalizable+Multi-View+Reconstruction&rft.au=Ren%2C+Yufan&rft.au=Wang%2C+Fangjinhua&rft.au=Zhang%2C+Tong&rft.au=Pollefeys%2C+Marc&rft.date=2023-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=16685&rft.epage=16695&rft_id=info:doi/10.1109%2FCVPR52729.2023.01601&rft.externalDocID=10204682