VolRecon: Volume Rendering of Signed Ray Distance Functions for Generalizable Multi-View Reconstruction
The success of the Neural Radiance Fields (NeRF) in novel view synthesis has inspired researchers to propose neural implicit scene reconstruction. However, most existing neural implicit reconstruction methods optimize perscene parameters and therefore lack generalizability to new scenes. We introduc...
Saved in:
Published in | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 16685 - 16695 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 |
DOI | 10.1109/CVPR52729.2023.01601 |
Cover
Abstract | The success of the Neural Radiance Fields (NeRF) in novel view synthesis has inspired researchers to propose neural implicit scene reconstruction. However, most existing neural implicit reconstruction methods optimize perscene parameters and therefore lack generalizability to new scenes. We introduce VolRecon, a novel generalizable implicit reconstruction method with Signed Ray Distance Function (SRDF). To reconstruct the scene with fine details and little noise, VolRecon combines projection features aggregated from multi-view features, and volume features interpolated from a coarse global feature volume. Using a ray transformer, we compute SRDF values of sampled points on a ray and then render color and depth. On DTU dataset, VolRecon outperforms SparseNeuS by about 30% in sparse view reconstruction and achieves comparable accuracy as MVSNet in full view reconstruction. Furthermore, our approach exhibits good generalization performance on the large-scale ETH3D benchmark. Code is available at https://github.com/IVRL/VolRecon/. |
---|---|
AbstractList | The success of the Neural Radiance Fields (NeRF) in novel view synthesis has inspired researchers to propose neural implicit scene reconstruction. However, most existing neural implicit reconstruction methods optimize perscene parameters and therefore lack generalizability to new scenes. We introduce VolRecon, a novel generalizable implicit reconstruction method with Signed Ray Distance Function (SRDF). To reconstruct the scene with fine details and little noise, VolRecon combines projection features aggregated from multi-view features, and volume features interpolated from a coarse global feature volume. Using a ray transformer, we compute SRDF values of sampled points on a ray and then render color and depth. On DTU dataset, VolRecon outperforms SparseNeuS by about 30% in sparse view reconstruction and achieves comparable accuracy as MVSNet in full view reconstruction. Furthermore, our approach exhibits good generalization performance on the large-scale ETH3D benchmark. Code is available at https://github.com/IVRL/VolRecon/. |
Author | Pollefeys, Marc Ren, Yufan Susstrunk, Sabine Zhang, Tong Wang, Fangjinhua |
Author_xml | – sequence: 1 givenname: Yufan surname: Ren fullname: Ren, Yufan organization: IVRL IC EPFL – sequence: 2 givenname: Fangjinhua surname: Wang fullname: Wang, Fangjinhua organization: ETH Zurich,Department of Computer Science – sequence: 3 givenname: Tong surname: Zhang fullname: Zhang, Tong organization: IVRL IC EPFL – sequence: 4 givenname: Marc surname: Pollefeys fullname: Pollefeys, Marc organization: ETH Zurich,Department of Computer Science – sequence: 5 givenname: Sabine surname: Susstrunk fullname: Susstrunk, Sabine organization: IVRL IC EPFL |
BookMark | eNotzs1OwkAUBeDRaCIib8BiXqB470w7P-4MCppgNFXZkml7h4wpU9OfEHx6Cbo6Z3Hy5Vyzi9hEYmyKMEMEeztfv-WZ0MLOBAg5A1SAZ2xitTUyAwkorDlnIwQlE2XRXrFJ130BgBSIypoR266bOqeyiXf82IYd8ZxiRW2IW954_h62kSqeuwN_CF3vYkl8McSyD03suG9avqRIravDjytq4i9D3YdkHWjPT2rXt8NpfMMuvas7mvznmH0uHj_mT8nqdfk8v18lQUDaJy6jsqr08XCaFqkhS5nRqFKtDYIXmS6cdN7bSnhXSK0yFKqopCxKLIxHkGM2_XMDEW2-27Bz7WGDcNSVEfIXFA5bBw |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR52729.2023.01601 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9798350301298 |
EISSN | 1063-6919 |
EndPage | 16695 |
ExternalDocumentID | 10204682 |
Genre | orig-research |
GrantInformation_xml | – fundername: Swiss National Science Foundation grantid: CRSII5-180359 funderid: 10.13039/501100001711 |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i204t-a5ecdd710644b48e9e58716477810f257ba3aff9d2fab3765126bd33bc1b8f103 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:56:30 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i204t-a5ecdd710644b48e9e58716477810f257ba3aff9d2fab3765126bd33bc1b8f103 |
PageCount | 11 |
ParticipantIDs | ieee_primary_10204682 |
PublicationCentury | 2000 |
PublicationDate | 2023-June |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-June |
PublicationDecade | 2020 |
PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003211698 |
Score | 2.4942021 |
Snippet | The success of the Neural Radiance Fields (NeRF) in novel view synthesis has inspired researchers to propose neural implicit scene reconstruction. However,... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 16685 |
SubjectTerms | 3D from multi-view and sensors Codes Color Computer vision Reconstruction algorithms Shape Surface reconstruction Transformers |
Title | VolRecon: Volume Rendering of Signed Ray Distance Functions for Generalizable Multi-View Reconstruction |
URI | https://ieeexplore.ieee.org/document/10204682 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60J0_1UfHNHrwmJt08dr1WSxEspdrQW9nHbClKUrBF9Nc7u0krCoK3EMhms5uZ-b7ZeRByjZDDIOfSQZayBAmKZIGSKgpyjfstQMbWONfA4zAbTJKHaTptktV9LgwA-OAzCN2lP8s3lV47VxlKeBfpHEeNu5vnok7W2jpUGFKZTPAmPS6OxE2vGI3TLqLH0PUID10ttfhHExVvQ_ptMty8vQ4deQnXKxXqz1-FGf89vX3S-U7Xo6OtITogO1AeknaDL2kjvW9HZF5Unm6Wt7TwSomOfSM5fIhWlj4t5qhz6Vh-0DuHKt2wfTR7_s-kCG5pU6PaBYK9AvW5u0GxgHfqR92Wou2QSf_-uTcImkYLwQJnvApkCtoYxBoIjlTCQUDqeVSe8ziyKNRKMmmtMF0rFWokBAmZMowpHStu44gdk1ZZlXBCaC4BTSKSOhwi4UbLXFhASqdNxK1g0SnpuIWbLetaGrPNmp39cf-c7LnNq4OzLkgLvwQuEQas1JXf_i9WubKH |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kHvRUHxXf7sFrYtLN02u1VG1LqW3orexjtpRKItgi-uud3aQVBcFbCGSy2cfM903mQcg1Qg6FnEs6UcgCJCicOYILz4klrncK3NfKuAZ6_agzDh4n4aRKVre5MABgg8_ANZf2X74q5Mq4yvCEN5HOJahxt0OkFXGZrrVxqTAkM1GaVAlyvpfetLLBMGwifnRNl3DXVFPzf7RRsVakXSf99fvL4JGFu1oKV37-Ks347wHukcZ3wh4dbEzRPtmC_IDUK4RJq_P7dkhmWWEJZ35LM6uW6NC2ksOHaKHp83yGWpcO-Qe9M7jSiG2j4bN7kyK8pVWVahMK9gLUZu862RzeqZW6KUbbIOP2_ajVcapWC84cR7x0eAhSKUQbCI9EkEAKoWVScZz4nsZjLTjjWqeqqblAnYQwIRKKMSF9kWjfY0eklhc5HBMac0CjiLQORQSJkjxONSCpk8pLdMq8E9IwEzd9LatpTNdzdvrH_Suy0xn1utPuQ__pjOyahSxDtc5JDb8KLhAULMWl3Qpf5Qm12A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=VolRecon%3A+Volume+Rendering+of+Signed+Ray+Distance+Functions+for+Generalizable+Multi-View+Reconstruction&rft.au=Ren%2C+Yufan&rft.au=Wang%2C+Fangjinhua&rft.au=Zhang%2C+Tong&rft.au=Pollefeys%2C+Marc&rft.date=2023-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=16685&rft.epage=16695&rft_id=info:doi/10.1109%2FCVPR52729.2023.01601&rft.externalDocID=10204682 |