Enhancing Deep Learning-based 3-lead ECG Classification with Heartbeat Counting and Demographic Data Integration

An increasing number of people are being diagnosed with cardiovascular diseases (CVDs), the leading cause of death globally. The gold standard for identifying these heart problems is via electrocardiogram (ECG). The standard 12-lead ECG is widely used in clinical practice and most of the current res...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES) pp. 154 - 159
Main Authors Le, Khiem H., Pham, Hieu H., Nguyen, Thao Bt, Nguyen, Tu A., Thanh, Tien N., Do, Cuong D.
Format Conference Proceeding
LanguageEnglish
Published IEEE 07.12.2022
Subjects
Online AccessGet full text
DOI10.1109/IECBES54088.2022.10079267

Cover

Abstract An increasing number of people are being diagnosed with cardiovascular diseases (CVDs), the leading cause of death globally. The gold standard for identifying these heart problems is via electrocardiogram (ECG). The standard 12-lead ECG is widely used in clinical practice and most of the current research. However, using fewer leads can make ECG more pervasive as it can be integrated with portable or wearable devices. This article introduces two novel techniques to improve the performance of the current deep learning system for 3-lead ECG classification, making it comparable with models that are trained using standard 12-lead ECG. Specifically, we propose a multi-task learning scheme in the form of the number of heartbeats regression and an effective mechanism to integrate patient demographic data into the system. With these two advancements, we got classification performance in terms of F1 scores of 0.9796 and 0.8140 on two large-scale ECG datasets, i.e., Chapman and CPSC2018, respectively, which surpassed current state-of-the-art ECG classification methods, even those trained on 12-lead data. Our source code is available at github.com/lhkhiem28/LightX3ECG.
AbstractList An increasing number of people are being diagnosed with cardiovascular diseases (CVDs), the leading cause of death globally. The gold standard for identifying these heart problems is via electrocardiogram (ECG). The standard 12-lead ECG is widely used in clinical practice and most of the current research. However, using fewer leads can make ECG more pervasive as it can be integrated with portable or wearable devices. This article introduces two novel techniques to improve the performance of the current deep learning system for 3-lead ECG classification, making it comparable with models that are trained using standard 12-lead ECG. Specifically, we propose a multi-task learning scheme in the form of the number of heartbeats regression and an effective mechanism to integrate patient demographic data into the system. With these two advancements, we got classification performance in terms of F1 scores of 0.9796 and 0.8140 on two large-scale ECG datasets, i.e., Chapman and CPSC2018, respectively, which surpassed current state-of-the-art ECG classification methods, even those trained on 12-lead data. Our source code is available at github.com/lhkhiem28/LightX3ECG.
Author Pham, Hieu H.
Nguyen, Thao Bt
Thanh, Tien N.
Le, Khiem H.
Do, Cuong D.
Nguyen, Tu A.
Author_xml – sequence: 1
  givenname: Khiem H.
  surname: Le
  fullname: Le, Khiem H.
  email: khiem.lh@vinuni.edu.vn
  organization: VinUniversity,VinUni-Illinois Smart Health Center,Hanoi,Vietnam
– sequence: 2
  givenname: Hieu H.
  surname: Pham
  fullname: Pham, Hieu H.
  organization: VinUniversity,VinUni-Illinois Smart Health Center,Hanoi,Vietnam
– sequence: 3
  givenname: Thao Bt
  surname: Nguyen
  fullname: Nguyen, Thao Bt
  organization: VinUniversity,VinUni-Illinois Smart Health Center,Hanoi,Vietnam
– sequence: 4
  givenname: Tu A.
  surname: Nguyen
  fullname: Nguyen, Tu A.
  organization: VinUniversity,VinUni-Illinois Smart Health Center,Hanoi,Vietnam
– sequence: 5
  givenname: Tien N.
  surname: Thanh
  fullname: Thanh, Tien N.
  organization: VinUniversity,College of Health Sciences,Hanoi,Vietnam
– sequence: 6
  givenname: Cuong D.
  surname: Do
  fullname: Do, Cuong D.
  organization: VinUniversity,VinUni-Illinois Smart Health Center,Hanoi,Vietnam
BookMark eNo1kMFOwzAQRI0EByj9Aw7mA1K8ju3YR0hDG6kSB-BcrdNNa6l1osQI8fekopxGM5p5h7lj17GLxNgjiAWAcE91Vb5U71oJaxdSSLkAIQonTXHF5q6wYIxWThmnbllfxQPGJsQ9XxL1fEM4xMllHkfa8Tw7Eu54Va54ecRxDG1oMIUu8u-QDnw9tZMnTLzsvmI6UzDuJtKp2w_YH0LDl5iQ1zHRFJyH9-ymxeNI84vO2Odr9VGus83bqi6fN1mQQqXMAVkjUVuNFiWS96QNkAclfYtFq4ocTQvOo2lsq02uAazWgGBQGC3yGXv44wYi2vZDOOHws_0_Iv8F4I1Y_w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IECBES54088.2022.10079267
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665494694
1665494697
EndPage 159
ExternalDocumentID 10079267
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i204t-91e862a585a8a2aebbe561eb142bfa7f473a6f19ba6c8f5635118551a16a06503
IEDL.DBID RIE
IngestDate Thu Jan 18 11:13:12 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-91e862a585a8a2aebbe561eb142bfa7f473a6f19ba6c8f5635118551a16a06503
PageCount 6
ParticipantIDs ieee_primary_10079267
PublicationCentury 2000
PublicationDate 2022-Dec.-7
PublicationDateYYYYMMDD 2022-12-07
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-7
  day: 07
PublicationDecade 2020
PublicationTitle 2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)
PublicationTitleAbbrev IECBES
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8473881
Snippet An increasing number of people are being diagnosed with cardiovascular diseases (CVDs), the leading cause of death globally. The gold standard for identifying...
SourceID ieee
SourceType Publisher
StartPage 154
SubjectTerms Data integration
Deep learning
Heart beat
Performance evaluation
Source coding
System performance
Wearable computers
Title Enhancing Deep Learning-based 3-lead ECG Classification with Heartbeat Counting and Demographic Data Integration
URI https://ieeexplore.ieee.org/document/10079267
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60B_GkYsU3K3jdtN1uN-nVNLUVLIIWeiuTzbQWNS2SXvz1zmxSRUHwFpZ9hB3YeX7fCHHNFGgug6YCg1oZcgAUoEPV6kAbSF0b7RjgfD-yg7G5m3QmFVjdY2EQ0RefYcCfPpefLd2aQ2UNzuh3tQ23xXYY2RKstSOuKt7MxjCJb5JHMkEirtnSOtjM_9E5xSuO_p4YbY4s60VegnWRBu7jFxvjv_9pX9S_MXry4Uv7HIgtzA_FKsmfmUAjn8se4kpW7Klzxcoqk231SiKVSXwrfTNMLhPykpEcjpUDml2k9DjLuOogISHPaKe3ktd64WQPCpDDimKCFtbFuJ88xQNV9VRQC900Bb1tSD4MkJMAEWjANEWyoJBDQekMwpkJSUSzVjcF66JZx3KeMSKrCloW2JprH4lavszxWEjHI9i0jiwo8puibpiFxmLoGWRAmxNR5-uarkrajOnmpk7_GD8Tuyw1XysSnota8b7GC9L4RXrpJf0JOeKrtQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60gnpSseLbFbxu2m43j15NU1Nti2ALvZXJZlqLmhZJL_56ZzepoiB4C0v2wQ7svL75hrEbQ4GmU6gLUCiFIgdAAGoUDReaQOpaSW0KnPsDLx6p-7E7LovVbS0MIlrwGTrm0-by04VemVBZzWT0W9LzN9mWS8u6RbnWNrsumTNr3Si8jZ7ICAkMaktKZz3jR-8Uqzo6e2yw3rRAjLw4qzxx9McvPsZ_n2qfVb-r9Pjjl_45YBuYHbJllD0bCo1sxtuIS17yp86EUVcpb4pXEiqPwjtu22EaoJCVDTcBWR7T33lCzzMPyx4SHLKUVnormK3nmrchB94tSSZoYpWNOtEwjEXZVUHMZV3l9LoheTFAbgIEIAGTBMmGQhMMSqbgT5VPQpo2Wgl4Opi6nsk0BmRXQcMDY881j1glW2R4zLg2I1j3NNlQ5DkFLT_1lYe-5ZABqU5Y1VzXZFkQZ0zWN3X6x_gV24mH_d6k1x08nLFdI0GLHPHPWSV_X-EF6f88ubRS_wRmeq8C
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE-EMBS+Conference+on+Biomedical+Engineering+and+Sciences+%28IECBES%29&rft.atitle=Enhancing+Deep+Learning-based+3-lead+ECG+Classification+with+Heartbeat+Counting+and+Demographic+Data+Integration&rft.au=Le%2C+Khiem+H.&rft.au=Pham%2C+Hieu+H.&rft.au=Nguyen%2C+Thao+Bt&rft.au=Nguyen%2C+Tu+A.&rft.date=2022-12-07&rft.pub=IEEE&rft.spage=154&rft.epage=159&rft_id=info:doi/10.1109%2FIECBES54088.2022.10079267&rft.externalDocID=10079267