Deep Motion Masking for Secure, Usable, and Scalable Real-Time Anonymization of Ecological Virtual Reality Motion Data
Virtual reality (VR) and "metaverse" systems have recently seen a resurgence in interest and investment as major technology companies continue to enter the space. However, recent studies have demonstrated that the motion tracking "telemetry" data used by nearly all VR application...
Saved in:
Published in | 2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) pp. 493 - 500 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
16.03.2024
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/VRW62533.2024.00096 |
Cover
Abstract | Virtual reality (VR) and "metaverse" systems have recently seen a resurgence in interest and investment as major technology companies continue to enter the space. However, recent studies have demonstrated that the motion tracking "telemetry" data used by nearly all VR applications is as uniquely identifiable as a fingerprint scan, raising significant privacy concerns surrounding metaverse technologies. In this paper, we propose a new "deep motion masking" approach that scalably facilitates the real-time anonymization of VR telemetry data. Through a large-scale user study (N=182) , we demonstrate that our method is significantly more usable and private than existing VR anonymity systems. |
---|---|
AbstractList | Virtual reality (VR) and "metaverse" systems have recently seen a resurgence in interest and investment as major technology companies continue to enter the space. However, recent studies have demonstrated that the motion tracking "telemetry" data used by nearly all VR applications is as uniquely identifiable as a fingerprint scan, raising significant privacy concerns surrounding metaverse technologies. In this paper, we propose a new "deep motion masking" approach that scalably facilitates the real-time anonymization of VR telemetry data. Through a large-scale user study (N=182) , we demonstrate that our method is significantly more usable and private than existing VR anonymity systems. |
Author | Song, Dawn Rosenberg, Louis O'Brien, James F. Nair, Vivek Guo, Wenbo |
Author_xml | – sequence: 1 givenname: Vivek surname: Nair fullname: Nair, Vivek email: vcn@berkeley.edu organization: UC Berkeley – sequence: 2 givenname: Wenbo surname: Guo fullname: Guo, Wenbo email: henrygwb@purdue.edu organization: Purdue University – sequence: 3 givenname: James F. surname: O'Brien fullname: O'Brien, James F. email: job@berkeley.edu organization: UC Berkeley – sequence: 4 givenname: Louis surname: Rosenberg fullname: Rosenberg, Louis email: louis@unanimous.ai organization: Unanimous AI – sequence: 5 givenname: Dawn surname: Song fullname: Song, Dawn email: dawnsong@berkeley.edu organization: UC Berkeley |
BookMark | eNo1kMtOwzAQRY0ECyj9Alj4A0gYx87Dy6otBakVUl8sq4kZVxZJXCUpUvh6Eh6ro5GO7tWdG3ZZ-YoYuxMQCgH6cb9-S6JYyjCCSIUAoJMLNtapzmQMMlVKwzX7nBGd-Mq3zld8hc2Hq47c-ppvyJxreuC7BvOiJ1bvfGOwGC6-JiyCrSuJT_rSrnRf-BPgLZ8bX_ij602-d3V77jnYru3-W2bY4i27slg0NP7jiO2e5tvpc7B8XbxMJ8vARaDaIDHSysyizQxqzIyxioTFGNO835MbGSuUuVYUmQjS3BgNIoZB0kk2DB2x-99cR0SHU-1KrLuDgFj2r1HyG77VWlw |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/VRW62533.2024.00096 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350374490 |
EndPage | 500 |
ExternalDocumentID | 10536254 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation funderid: 10.13039/100000001 |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i204t-6c3f38faf8ca9a8ccf4e1fa5a7b000bc354a3b94e2c207bcc90150f4e19687983 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 05 05:40:33 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i204t-6c3f38faf8ca9a8ccf4e1fa5a7b000bc354a3b94e2c207bcc90150f4e19687983 |
PageCount | 8 |
ParticipantIDs | ieee_primary_10536254 |
PublicationCentury | 2000 |
PublicationDate | 2024-March-16 |
PublicationDateYYYYMMDD | 2024-03-16 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-March-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | 2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) |
PublicationTitleAbbrev | VRW |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.9053166 |
Snippet | Virtual reality (VR) and "metaverse" systems have recently seen a resurgence in interest and investment as major technology companies continue to enter the... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 493 |
SubjectTerms | Augmented Reality Biometrics Data privacy Deep learning Extended Reality Metaverse Mixed Reality MoCap Motion Capture Privacy Real-time systems Security Telemetry Tracking User interfaces Virtual reality |
Title | Deep Motion Masking for Secure, Usable, and Scalable Real-Time Anonymization of Ecological Virtual Reality Motion Data |
URI | https://ieeexplore.ieee.org/document/10536254 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LawIxEA7VU09tqaVvcujRtbt551wVKSjFVutNstkEpKCiaw_99c1k1wqFQm_7CCRk2JnZL_N9g9CDUIQVkvpEGuETZsEPamMTIpT2uSi4pkBwHo7EYMKeZ3xWk9UjF8Y5F4vPXAcu41l-sbI7gMrCF86Dv-WsgRpS6oqsVSsJZal-nI7fw1tKw18fAU3sNCrxH3qmxJDRP0Gj_WRVpchHZ1fmHfv1S4fx36s5Ra0DOw-__MSdM3Tklufos-vcGg9jTx48NFtAwHFISHEE1F0bT7ZAkmpjsyzwazAM3OFxSBMTYIHgCgaoSZl45XHP7t0ini42wDKJo0PSvp-la0rTQpN-7-1pkNQ9FZIFSVmZCEs9Vd54ZY02ylrPXOYNNxLSgdxSzgzNNXPEklTm1kZIBAZpoaRW9AI1w4LcJcKpsFlWCMadLIIbUIboEOqozR2RkvvsCrVg0-brSjZjvt-v6z-e36BjMBwUeGXiFjXLzc7dhYhf5vfR0t-YSa1I |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4UD3pSI8a3PXhkcbfvngWCyhKDgN5It9smxAQILB789bbdRRITE2_7aNKmk52ZfjvfNwDcMYFIzrGNuGI2Itr7Qal0hJiQNmM5ldgTnNM-647I0zt9r8jqgQtjjAnFZ6bpL8O__Hyu1x4qc184df6Wkl2wR92xgpd0rUpLKInl_Xjw5t5j7M59yKtix0GLf9s1JQSNziHob6Yra0U-musia-qvX0qM_17PEahv-Xnw5SfyHIMdMzsBny1jFjANXXlgqlYeA4cuJYUBUjcNOFp5mlQDqlkOX51p_B0cuEQx8jwQWAIBFS0Tzi1s641jhOPp0vNMwmiXtm9maalC1cGo0x4-dKOqq0I0RTEpIqaxxcIqK7SSSmhtiUmsoor7hCDTmBKFM0kM0ijmmdYBFPGDJBNcCnwKam5B5gzAmOkkyRmhhufOEQiFpAt2WGcGcU5tcg7qftMmi1I4Y7LZr4s_nt-C_e4w7U16j_3nS3DgjejLvRJ2BWrFcm2uXfwvsptg9W_fUrCZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+Conference+on+Virtual+Reality+and+3D+User+Interfaces+Abstracts+and+Workshops+%28VRW%29&rft.atitle=Deep+Motion+Masking+for+Secure%2C+Usable%2C+and+Scalable+Real-Time+Anonymization+of+Ecological+Virtual+Reality+Motion+Data&rft.au=Nair%2C+Vivek&rft.au=Guo%2C+Wenbo&rft.au=O%27Brien%2C+James+F.&rft.au=Rosenberg%2C+Louis&rft.date=2024-03-16&rft.pub=IEEE&rft.spage=493&rft.epage=500&rft_id=info:doi/10.1109%2FVRW62533.2024.00096&rft.externalDocID=10536254 |