Deep Motion Masking for Secure, Usable, and Scalable Real-Time Anonymization of Ecological Virtual Reality Motion Data

Virtual reality (VR) and "metaverse" systems have recently seen a resurgence in interest and investment as major technology companies continue to enter the space. However, recent studies have demonstrated that the motion tracking "telemetry" data used by nearly all VR application...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) pp. 493 - 500
Main Authors Nair, Vivek, Guo, Wenbo, O'Brien, James F., Rosenberg, Louis, Song, Dawn
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.03.2024
Subjects
Online AccessGet full text
DOI10.1109/VRW62533.2024.00096

Cover

Abstract Virtual reality (VR) and "metaverse" systems have recently seen a resurgence in interest and investment as major technology companies continue to enter the space. However, recent studies have demonstrated that the motion tracking "telemetry" data used by nearly all VR applications is as uniquely identifiable as a fingerprint scan, raising significant privacy concerns surrounding metaverse technologies. In this paper, we propose a new "deep motion masking" approach that scalably facilitates the real-time anonymization of VR telemetry data. Through a large-scale user study (N=182) , we demonstrate that our method is significantly more usable and private than existing VR anonymity systems.
AbstractList Virtual reality (VR) and "metaverse" systems have recently seen a resurgence in interest and investment as major technology companies continue to enter the space. However, recent studies have demonstrated that the motion tracking "telemetry" data used by nearly all VR applications is as uniquely identifiable as a fingerprint scan, raising significant privacy concerns surrounding metaverse technologies. In this paper, we propose a new "deep motion masking" approach that scalably facilitates the real-time anonymization of VR telemetry data. Through a large-scale user study (N=182) , we demonstrate that our method is significantly more usable and private than existing VR anonymity systems.
Author Song, Dawn
Rosenberg, Louis
O'Brien, James F.
Nair, Vivek
Guo, Wenbo
Author_xml – sequence: 1
  givenname: Vivek
  surname: Nair
  fullname: Nair, Vivek
  email: vcn@berkeley.edu
  organization: UC Berkeley
– sequence: 2
  givenname: Wenbo
  surname: Guo
  fullname: Guo, Wenbo
  email: henrygwb@purdue.edu
  organization: Purdue University
– sequence: 3
  givenname: James F.
  surname: O'Brien
  fullname: O'Brien, James F.
  email: job@berkeley.edu
  organization: UC Berkeley
– sequence: 4
  givenname: Louis
  surname: Rosenberg
  fullname: Rosenberg, Louis
  email: louis@unanimous.ai
  organization: Unanimous AI
– sequence: 5
  givenname: Dawn
  surname: Song
  fullname: Song, Dawn
  email: dawnsong@berkeley.edu
  organization: UC Berkeley
BookMark eNo1kMtOwzAQRY0ECyj9Alj4A0gYx87Dy6otBakVUl8sq4kZVxZJXCUpUvh6Eh6ro5GO7tWdG3ZZ-YoYuxMQCgH6cb9-S6JYyjCCSIUAoJMLNtapzmQMMlVKwzX7nBGd-Mq3zld8hc2Hq47c-ppvyJxreuC7BvOiJ1bvfGOwGC6-JiyCrSuJT_rSrnRf-BPgLZ8bX_ij602-d3V77jnYru3-W2bY4i27slg0NP7jiO2e5tvpc7B8XbxMJ8vARaDaIDHSysyizQxqzIyxioTFGNO835MbGSuUuVYUmQjS3BgNIoZB0kk2DB2x-99cR0SHU-1KrLuDgFj2r1HyG77VWlw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/VRW62533.2024.00096
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350374490
EndPage 500
ExternalDocumentID 10536254
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i204t-6c3f38faf8ca9a8ccf4e1fa5a7b000bc354a3b94e2c207bcc90150f4e19687983
IEDL.DBID RIE
IngestDate Wed Jun 05 05:40:33 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-6c3f38faf8ca9a8ccf4e1fa5a7b000bc354a3b94e2c207bcc90150f4e19687983
PageCount 8
ParticipantIDs ieee_primary_10536254
PublicationCentury 2000
PublicationDate 2024-March-16
PublicationDateYYYYMMDD 2024-03-16
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-March-16
  day: 16
PublicationDecade 2020
PublicationTitle 2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)
PublicationTitleAbbrev VRW
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9053166
Snippet Virtual reality (VR) and "metaverse" systems have recently seen a resurgence in interest and investment as major technology companies continue to enter the...
SourceID ieee
SourceType Publisher
StartPage 493
SubjectTerms Augmented Reality
Biometrics
Data privacy
Deep learning
Extended Reality
Metaverse
Mixed Reality
MoCap
Motion Capture
Privacy
Real-time systems
Security
Telemetry
Tracking
User interfaces
Virtual reality
Title Deep Motion Masking for Secure, Usable, and Scalable Real-Time Anonymization of Ecological Virtual Reality Motion Data
URI https://ieeexplore.ieee.org/document/10536254
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LawIxEA7VU09tqaVvcujRtbt551wVKSjFVutNstkEpKCiaw_99c1k1wqFQm_7CCRk2JnZL_N9g9CDUIQVkvpEGuETZsEPamMTIpT2uSi4pkBwHo7EYMKeZ3xWk9UjF8Y5F4vPXAcu41l-sbI7gMrCF86Dv-WsgRpS6oqsVSsJZal-nI7fw1tKw18fAU3sNCrxH3qmxJDRP0Gj_WRVpchHZ1fmHfv1S4fx36s5Ra0DOw-__MSdM3Tklufos-vcGg9jTx48NFtAwHFISHEE1F0bT7ZAkmpjsyzwazAM3OFxSBMTYIHgCgaoSZl45XHP7t0ini42wDKJo0PSvp-la0rTQpN-7-1pkNQ9FZIFSVmZCEs9Vd54ZY02ylrPXOYNNxLSgdxSzgzNNXPEklTm1kZIBAZpoaRW9AI1w4LcJcKpsFlWCMadLIIbUIboEOqozR2RkvvsCrVg0-brSjZjvt-v6z-e36BjMBwUeGXiFjXLzc7dhYhf5vfR0t-YSa1I
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4UD3pSI8a3PXhkcbfvngWCyhKDgN5It9smxAQILB789bbdRRITE2_7aNKmk52ZfjvfNwDcMYFIzrGNuGI2Itr7Qal0hJiQNmM5ldgTnNM-647I0zt9r8jqgQtjjAnFZ6bpL8O__Hyu1x4qc184df6Wkl2wR92xgpd0rUpLKInl_Xjw5t5j7M59yKtix0GLf9s1JQSNziHob6Yra0U-musia-qvX0qM_17PEahv-Xnw5SfyHIMdMzsBny1jFjANXXlgqlYeA4cuJYUBUjcNOFp5mlQDqlkOX51p_B0cuEQx8jwQWAIBFS0Tzi1s641jhOPp0vNMwmiXtm9maalC1cGo0x4-dKOqq0I0RTEpIqaxxcIqK7SSSmhtiUmsoor7hCDTmBKFM0kM0ijmmdYBFPGDJBNcCnwKam5B5gzAmOkkyRmhhufOEQiFpAt2WGcGcU5tcg7qftMmi1I4Y7LZr4s_nt-C_e4w7U16j_3nS3DgjejLvRJ2BWrFcm2uXfwvsptg9W_fUrCZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+Conference+on+Virtual+Reality+and+3D+User+Interfaces+Abstracts+and+Workshops+%28VRW%29&rft.atitle=Deep+Motion+Masking+for+Secure%2C+Usable%2C+and+Scalable+Real-Time+Anonymization+of+Ecological+Virtual+Reality+Motion+Data&rft.au=Nair%2C+Vivek&rft.au=Guo%2C+Wenbo&rft.au=O%27Brien%2C+James+F.&rft.au=Rosenberg%2C+Louis&rft.date=2024-03-16&rft.pub=IEEE&rft.spage=493&rft.epage=500&rft_id=info:doi/10.1109%2FVRW62533.2024.00096&rft.externalDocID=10536254