Learned Complex Circle Manifold Network for MIMO Radar Waveform Design
The waveform design for transmit beampattern with constant modulus constraint (CMC) is the key technology in Multiple Input Multiple Output (MIMO) radar systems. Usually, the existing methods mainly include two categories: classical statistical modeling methods, most of which relax the problem with...
        Saved in:
      
    
          | Published in | 2023 IEEE Radar Conference (RadarConf23) pp. 1 - 5 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.05.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| DOI | 10.1109/RadarConf2351548.2023.10149634 | 
Cover
| Abstract | The waveform design for transmit beampattern with constant modulus constraint (CMC) is the key technology in Multiple Input Multiple Output (MIMO) radar systems. Usually, the existing methods mainly include two categories: classical statistical modeling methods, most of which relax the problem with performance degradation; and conventional data-driven Deep Neural Networks (DNNs) without considering the characteristic of CMC. We notice that the CMC can be geometrically interpreted as restricting the solution to a Complex Circle Manifold (CCM), then the model-driven Learned CCM Network (LCCM-Net) is proposed, where the gradient descent algorithm is unfolded as the network layer. Different from the existing methods, the proposed method considers both the characteristic of CMC without relaxation and adaptively adjusting the stepsize by the network. Compared with the existing methods, the proposed method can achieve SINR gain enhancement with less computational cost. | 
    
|---|---|
| AbstractList | The waveform design for transmit beampattern with constant modulus constraint (CMC) is the key technology in Multiple Input Multiple Output (MIMO) radar systems. Usually, the existing methods mainly include two categories: classical statistical modeling methods, most of which relax the problem with performance degradation; and conventional data-driven Deep Neural Networks (DNNs) without considering the characteristic of CMC. We notice that the CMC can be geometrically interpreted as restricting the solution to a Complex Circle Manifold (CCM), then the model-driven Learned CCM Network (LCCM-Net) is proposed, where the gradient descent algorithm is unfolded as the network layer. Different from the existing methods, the proposed method considers both the characteristic of CMC without relaxation and adaptively adjusting the stepsize by the network. Compared with the existing methods, the proposed method can achieve SINR gain enhancement with less computational cost. | 
    
| Author | Zhong, Kai Yu, Xianxiang Zhu, Gangyong Yuan, Ye Hu, Jinfeng Cui, Guolong  | 
    
| Author_xml | – sequence: 1 givenname: Kai surname: Zhong fullname: Zhong, Kai email: 201921011206@std.uestc.edu.cn organization: Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China,Quzhou,China – sequence: 2 givenname: Jinfeng surname: Hu fullname: Hu, Jinfeng email: hujf@uestc.edu.cn organization: Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China,Quzhou,China – sequence: 3 givenname: Ye surname: Yuan fullname: Yuan, Ye email: 202122011910@std.uestc.edu.cn organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China,Chengdu,China – sequence: 4 givenname: Gangyong surname: Zhu fullname: Zhu, Gangyong email: 202122011909@std.uestc.edu.cn organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China,Chengdu,China – sequence: 5 givenname: Xianxiang surname: Yu fullname: Yu, Xianxiang email: xianxiangyu@uestc.edu.cn organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China,Chengdu,China – sequence: 6 givenname: Guolong surname: Cui fullname: Cui, Guolong email: cuiguolong@uestc.edu.cn organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China,Chengdu,China  | 
    
| BookMark | eNo1j8tKAzEYRiPoQmvfwEVW7mbMPZOljFYLMy0UxWVJJn8kOJOUtHh5e4uX1YGzOB_fBTpNOQFC15TUlBJzs7HeljanwLikUjQ1I4zXlFBhFBcnaG50Q5WSgitlxDladGBLAo_bPO1G-MRtLMMIuLcphjx6vILDRy5vOOSC-2W_xj8L-MW-w1FN-A728TVdorNgxz3M_zhDz4v7p_ax6tYPy_a2qyIj4lBJ7aSVmjNNvBP06Abt1RCAc0uFdM4qoYx1JHgShDa8YQKUB8e1a5xUfIaufrsRALa7Eidbvrb_9_g3dwZLzA | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IH CBEJK RIE RIO  | 
    
| DOI | 10.1109/RadarConf2351548.2023.10149634 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore (IEEE/IET Electronic Library - IEL) IEEE Proceedings Order Plans (POP) 1998-present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISBN | 9781665436694 1665436697  | 
    
| EndPage | 5 | 
    
| ExternalDocumentID | 10149634 | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61871102,62231006 funderid: 10.13039/501100001809  | 
    
| GroupedDBID | 6IE 6IH CBEJK RIE RIO  | 
    
| ID | FETCH-LOGICAL-i204t-57b5a573270db41204c7d6cfe33a145bba6469ab0fd0f4793824e6deb37b8b563 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Thu Jan 18 11:13:15 EST 2024 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i204t-57b5a573270db41204c7d6cfe33a145bba6469ab0fd0f4793824e6deb37b8b563 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | ieee_primary_10149634 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-May-1 | 
    
| PublicationDateYYYYMMDD | 2023-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-May-1 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 2023 IEEE Radar Conference (RadarConf23) | 
    
| PublicationTitleAbbrev | RADARCONF23 | 
    
| PublicationYear | 2023 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| Score | 2.2487686 | 
    
| Snippet | The waveform design for transmit beampattern with constant modulus constraint (CMC) is the key technology in Multiple Input Multiple Output (MIMO) radar... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1 | 
    
| SubjectTerms | Adaptation models Computational modeling Constant modulus Deep learning Interference LCCM-Net method Manifolds MIMO radar Radar Waveform design  | 
    
| Title | Learned Complex Circle Manifold Network for MIMO Radar Waveform Design | 
    
| URI | https://ieeexplore.ieee.org/document/10149634 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62B_GkYsU3OYi33e7msdmeq6UKW0Us9lYmySwUy1bKVsRfb5JtFQXBWwiEvJmZ5Pu-IeSSM7AlJCJiaSkiYTSLepD2Im1tIgCR6SDiWoyy4VjcTeRkTVYPXBhEDOAzjH0x_OXbhVn5p7KuzyvrDoxokZbKs4astU2u1rqZ3UdwobcnyjEuvSce-9Tg8abRj_QpwXoMdslo028DGnmJV7WOzccvScZ_D2yPdL6JevThywTtky2sDsggaKaipf6uz_Gd9mdLdzhoAdWsXMwtHTXQb-r8VVrcFvc0TIk-wxt6F5ZeB1RHh4wHN0_9YbROlxDNWCLqSCotQSrOVGK1SF2dUTYzJXIOqZBaQ-ZiYdBJaZPSP6jlTGBmXTStdK5lxg9Ju1pUeESozAF6LnZArrlgWoBCxsF_2RrjGopj0vGLMH1tFDGmm_mf_FF_Snb8XjRAwTPSrpcrPHfGvNYXYRM_Aa_bn0w | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA06QX1SceK3eRDf2rXJTbs9T8emaxXZcG8jaW5hbHQyOhF_vUm6KQqCbyEQ8s29NznnXEKuOZM6lwF4LMzBg0wxryXDlqe0DkAiMuVEXJM06g7hfiRGK7K648IgogOfoW-L7i9fz7OlfSpr2Lyy5sDAJtkSACAqutY2uVkpZzaepQm-LVWOcWF9cd8mB_fXzX4kUHH2o7NH0nXPFWxk6i9L5Wcfv0QZ_z20fVL_purRpy8jdEA2sDgkHaeaipra2z7Dd9qeLMzxoIksJvl8pmlagb-p8Vhp0kseqZsSfZFvaJ1YeutwHXUy7NwN2l1vlTDBm7AASk_ESkgRcxYHWkFo6rJYR1mOnMsQhFIyMtGwVEGug9w-qTUZYKRNPB2rphIRPyK1Yl7gMaGiKWXLRA_IFQemQMbIuLSftllmGsIJqdtFGL9Wmhjj9fxP_6i_IjvdQdIf93vpwxnZtftSwQbPSa1cLPHCmPZSXboN_QQ6FKKZ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+Radar+Conference+%28RadarConf23%29&rft.atitle=Learned+Complex+Circle+Manifold+Network+for+MIMO+Radar+Waveform+Design&rft.au=Zhong%2C+Kai&rft.au=Hu%2C+Jinfeng&rft.au=Yuan%2C+Ye&rft.au=Zhu%2C+Gangyong&rft.date=2023-05-01&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FRadarConf2351548.2023.10149634&rft.externalDocID=10149634 |