Learned Complex Circle Manifold Network for MIMO Radar Waveform Design

The waveform design for transmit beampattern with constant modulus constraint (CMC) is the key technology in Multiple Input Multiple Output (MIMO) radar systems. Usually, the existing methods mainly include two categories: classical statistical modeling methods, most of which relax the problem with...

Full description

Saved in:
Bibliographic Details
Published in2023 IEEE Radar Conference (RadarConf23) pp. 1 - 5
Main Authors Zhong, Kai, Hu, Jinfeng, Yuan, Ye, Zhu, Gangyong, Yu, Xianxiang, Cui, Guolong
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2023
Subjects
Online AccessGet full text
DOI10.1109/RadarConf2351548.2023.10149634

Cover

Abstract The waveform design for transmit beampattern with constant modulus constraint (CMC) is the key technology in Multiple Input Multiple Output (MIMO) radar systems. Usually, the existing methods mainly include two categories: classical statistical modeling methods, most of which relax the problem with performance degradation; and conventional data-driven Deep Neural Networks (DNNs) without considering the characteristic of CMC. We notice that the CMC can be geometrically interpreted as restricting the solution to a Complex Circle Manifold (CCM), then the model-driven Learned CCM Network (LCCM-Net) is proposed, where the gradient descent algorithm is unfolded as the network layer. Different from the existing methods, the proposed method considers both the characteristic of CMC without relaxation and adaptively adjusting the stepsize by the network. Compared with the existing methods, the proposed method can achieve SINR gain enhancement with less computational cost.
AbstractList The waveform design for transmit beampattern with constant modulus constraint (CMC) is the key technology in Multiple Input Multiple Output (MIMO) radar systems. Usually, the existing methods mainly include two categories: classical statistical modeling methods, most of which relax the problem with performance degradation; and conventional data-driven Deep Neural Networks (DNNs) without considering the characteristic of CMC. We notice that the CMC can be geometrically interpreted as restricting the solution to a Complex Circle Manifold (CCM), then the model-driven Learned CCM Network (LCCM-Net) is proposed, where the gradient descent algorithm is unfolded as the network layer. Different from the existing methods, the proposed method considers both the characteristic of CMC without relaxation and adaptively adjusting the stepsize by the network. Compared with the existing methods, the proposed method can achieve SINR gain enhancement with less computational cost.
Author Zhong, Kai
Yu, Xianxiang
Zhu, Gangyong
Yuan, Ye
Hu, Jinfeng
Cui, Guolong
Author_xml – sequence: 1
  givenname: Kai
  surname: Zhong
  fullname: Zhong, Kai
  email: 201921011206@std.uestc.edu.cn
  organization: Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China,Quzhou,China
– sequence: 2
  givenname: Jinfeng
  surname: Hu
  fullname: Hu, Jinfeng
  email: hujf@uestc.edu.cn
  organization: Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China,Quzhou,China
– sequence: 3
  givenname: Ye
  surname: Yuan
  fullname: Yuan, Ye
  email: 202122011910@std.uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China,Chengdu,China
– sequence: 4
  givenname: Gangyong
  surname: Zhu
  fullname: Zhu, Gangyong
  email: 202122011909@std.uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China,Chengdu,China
– sequence: 5
  givenname: Xianxiang
  surname: Yu
  fullname: Yu, Xianxiang
  email: xianxiangyu@uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China,Chengdu,China
– sequence: 6
  givenname: Guolong
  surname: Cui
  fullname: Cui, Guolong
  email: cuiguolong@uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China,Chengdu,China
BookMark eNo1j8tKAzEYRiPoQmvfwEVW7mbMPZOljFYLMy0UxWVJJn8kOJOUtHh5e4uX1YGzOB_fBTpNOQFC15TUlBJzs7HeljanwLikUjQ1I4zXlFBhFBcnaG50Q5WSgitlxDladGBLAo_bPO1G-MRtLMMIuLcphjx6vILDRy5vOOSC-2W_xj8L-MW-w1FN-A728TVdorNgxz3M_zhDz4v7p_ax6tYPy_a2qyIj4lBJ7aSVmjNNvBP06Abt1RCAc0uFdM4qoYx1JHgShDa8YQKUB8e1a5xUfIaufrsRALa7Eidbvrb_9_g3dwZLzA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/RadarConf2351548.2023.10149634
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore (IEEE/IET Electronic Library - IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665436694
1665436697
EndPage 5
ExternalDocumentID 10149634
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61871102,62231006
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i204t-57b5a573270db41204c7d6cfe33a145bba6469ab0fd0f4793824e6deb37b8b563
IEDL.DBID RIE
IngestDate Thu Jan 18 11:13:15 EST 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-57b5a573270db41204c7d6cfe33a145bba6469ab0fd0f4793824e6deb37b8b563
PageCount 5
ParticipantIDs ieee_primary_10149634
PublicationCentury 2000
PublicationDate 2023-May-1
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-May-1
  day: 01
PublicationDecade 2020
PublicationTitle 2023 IEEE Radar Conference (RadarConf23)
PublicationTitleAbbrev RADARCONF23
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.2487686
Snippet The waveform design for transmit beampattern with constant modulus constraint (CMC) is the key technology in Multiple Input Multiple Output (MIMO) radar...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptation models
Computational modeling
Constant modulus
Deep learning
Interference
LCCM-Net method
Manifolds
MIMO radar
Radar
Waveform design
Title Learned Complex Circle Manifold Network for MIMO Radar Waveform Design
URI https://ieeexplore.ieee.org/document/10149634
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62B_GkYsU3OYi33e7msdmeq6UKW0Us9lYmySwUy1bKVsRfb5JtFQXBWwiEvJmZ5Pu-IeSSM7AlJCJiaSkiYTSLepD2Im1tIgCR6SDiWoyy4VjcTeRkTVYPXBhEDOAzjH0x_OXbhVn5p7KuzyvrDoxokZbKs4astU2u1rqZ3UdwobcnyjEuvSce-9Tg8abRj_QpwXoMdslo028DGnmJV7WOzccvScZ_D2yPdL6JevThywTtky2sDsggaKaipf6uz_Gd9mdLdzhoAdWsXMwtHTXQb-r8VVrcFvc0TIk-wxt6F5ZeB1RHh4wHN0_9YbROlxDNWCLqSCotQSrOVGK1SF2dUTYzJXIOqZBaQ-ZiYdBJaZPSP6jlTGBmXTStdK5lxg9Ju1pUeESozAF6LnZArrlgWoBCxsF_2RrjGopj0vGLMH1tFDGmm_mf_FF_Snb8XjRAwTPSrpcrPHfGvNYXYRM_Aa_bn0w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA06QX1SceK3eRDf2rXJTbs9T8emaxXZcG8jaW5hbHQyOhF_vUm6KQqCbyEQ8s29NznnXEKuOZM6lwF4LMzBg0wxryXDlqe0DkAiMuVEXJM06g7hfiRGK7K648IgogOfoW-L7i9fz7OlfSpr2Lyy5sDAJtkSACAqutY2uVkpZzaepQm-LVWOcWF9cd8mB_fXzX4kUHH2o7NH0nXPFWxk6i9L5Wcfv0QZ_z20fVL_purRpy8jdEA2sDgkHaeaipra2z7Dd9qeLMzxoIksJvl8pmlagb-p8Vhp0kseqZsSfZFvaJ1YeutwHXUy7NwN2l1vlTDBm7AASk_ESkgRcxYHWkFo6rJYR1mOnMsQhFIyMtGwVEGug9w-qTUZYKRNPB2rphIRPyK1Yl7gMaGiKWXLRA_IFQemQMbIuLSftllmGsIJqdtFGL9Wmhjj9fxP_6i_IjvdQdIf93vpwxnZtftSwQbPSa1cLPHCmPZSXboN_QQ6FKKZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+Radar+Conference+%28RadarConf23%29&rft.atitle=Learned+Complex+Circle+Manifold+Network+for+MIMO+Radar+Waveform+Design&rft.au=Zhong%2C+Kai&rft.au=Hu%2C+Jinfeng&rft.au=Yuan%2C+Ye&rft.au=Zhu%2C+Gangyong&rft.date=2023-05-01&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FRadarConf2351548.2023.10149634&rft.externalDocID=10149634