Online prediction of photovoltaic power considering concept drift

Concept drift (CD) is considered to be the source of the deterioration of the accuracy of data-driven models over time. However, the CD in photovoltaic (PV) power predictions has rarely been studied. In this paper, an online PV power prediction method is proposed, which simultaneously handles the re...

Full description

Saved in:
Bibliographic Details
Published inIEEE Power & Energy Society General Meeting pp. 1 - 5
Main Authors Zhang, Le, Zhu, Jizhong, Cheung, Kwok, Zhou, Jialin
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.07.2023
Subjects
Online AccessGet full text
ISSN1944-9933
DOI10.1109/PESGM52003.2023.10252625

Cover

Abstract Concept drift (CD) is considered to be the source of the deterioration of the accuracy of data-driven models over time. However, the CD in photovoltaic (PV) power predictions has rarely been studied. In this paper, an online PV power prediction method is proposed, which simultaneously handles the real and virtual CD of the PV power data stream. The proposed method uses a LSTM network as a predictor and consists of CD detection and model parameter update. As for CD detection, the Energy distance between the historical and new data distribution is used as the virtual drift detection criterion. The Drift Detection Method (DDM) algorithm is used to detect real drift and define drift levels. As for model parameter update, this paper uses an orthogonal weight modification (OWM) algorithm to quickly update the parameters of the LSTM and continuously learn new data features without forgetting after the drift occurs. Finally, to verify the effectiveness of the proposed method, this paper conducts tests on public datasets. The results show that the proposed method can improve the accuracy of online PV power prediction.
AbstractList Concept drift (CD) is considered to be the source of the deterioration of the accuracy of data-driven models over time. However, the CD in photovoltaic (PV) power predictions has rarely been studied. In this paper, an online PV power prediction method is proposed, which simultaneously handles the real and virtual CD of the PV power data stream. The proposed method uses a LSTM network as a predictor and consists of CD detection and model parameter update. As for CD detection, the Energy distance between the historical and new data distribution is used as the virtual drift detection criterion. The Drift Detection Method (DDM) algorithm is used to detect real drift and define drift levels. As for model parameter update, this paper uses an orthogonal weight modification (OWM) algorithm to quickly update the parameters of the LSTM and continuously learn new data features without forgetting after the drift occurs. Finally, to verify the effectiveness of the proposed method, this paper conducts tests on public datasets. The results show that the proposed method can improve the accuracy of online PV power prediction.
Author Zhu, Jizhong
Zhang, Le
Cheung, Kwok
Zhou, Jialin
Author_xml – sequence: 1
  givenname: Le
  surname: Zhang
  fullname: Zhang, Le
  email: wjtclwwf@163.com
  organization: South China University of Technology,School of electric power,Guangzhou,China
– sequence: 2
  givenname: Jizhong
  surname: Zhu
  fullname: Zhu, Jizhong
  email: zhujz@scut.edu.cn
  organization: South China University of Technology,School of electric power,Guangzhou,China
– sequence: 3
  givenname: Kwok
  surname: Cheung
  fullname: Cheung, Kwok
  email: kwok.cheung@ge.com
  organization: GE Grid Solutions,Redmond,USA
– sequence: 4
  givenname: Jialin
  surname: Zhou
  fullname: Zhou, Jialin
  email: 1061470670@qq.com
  organization: South China University of Technology,School of electric power,Guangzhou,China
BookMark eNo1z8tKAzEYBeAoCra1b-AiLzA190mWpdQqVCqo65LLPxoZkyETFN_eEfVszrc6cOboLOUECGFKVpQSc_2wfdzdS0YIXzHC-IoSJpli8gTNqVJSKCEoOUUzaoRojOH8Ai3H8Y1MkaJVis3Q-pD6mAAPBUL0NeaEc4eH11zzR-6rjR4P-RMK9jmNMUCJ6eXHHoaKQ4ldvUTnne1HWP71Aj3fbJ82t83-sLvbrPdNZETURrbGOyV94FoFQ5x2lmjXQeuYbVUHGjoVnFHaAFigE8IkEZiDVnmn-QJd_e5GADgOJb7b8nX8v8y_AdJVT3s
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/PESGM52003.2023.10252625
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665464410
9781665464413
EISSN 1944-9933
EndPage 5
ExternalDocumentID 10252625
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 29O
6IE
6IF
6IH
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i204t-579cb65cd386d90b8ba08bfe7b2a76fe8ef6db9689eeae1968d9ee4d2be76cb83
IEDL.DBID RIE
IngestDate Wed Aug 27 02:50:43 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-579cb65cd386d90b8ba08bfe7b2a76fe8ef6db9689eeae1968d9ee4d2be76cb83
PageCount 5
ParticipantIDs ieee_primary_10252625
PublicationCentury 2000
PublicationDate 2023-July-16
PublicationDateYYYYMMDD 2023-07-16
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-16
  day: 16
PublicationDecade 2020
PublicationTitle IEEE Power & Energy Society General Meeting
PublicationTitleAbbrev PESGM
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000547662
Score 2.2281835
Snippet Concept drift (CD) is considered to be the source of the deterioration of the accuracy of data-driven models over time. However, the CD in photovoltaic (PV)...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms concept drift
Data models
Deep learning
Online PV power prediction
orthogonal weight modification
Photovoltaic systems
Prediction algorithms
Predictive models
Title Online prediction of photovoltaic power considering concept drift
URI https://ieeexplore.ieee.org/document/10252625
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JasMwEBVNTu2lW0p3dOjVri3JWo6lJA2FhEAbyC1Y0oiGQmyCcunXV7KTdIFCb4NBIDQez3j05j2E7oTLqXQ2wiokTVgoEELMkTKR4f3JM2mANFRKozEfTtnzrJhthtWbWRgAaMBnkEazucu3lVnHVlmIcFKQULB3UEdI3g5r7RoqofYQnO_QOpm6n_RfnkaRVoimUSQ83S7_IaTS5JHBIRpvd9DCR97Ttdep-fhFzvjvLR6h3tfIHp7sktEx2oPlCTr4xjZ4ih5aWlFcr-LlTHQIrhyu3ypfhW-ULxcG11EzDZuNiGdYFe0IfMF2tXC-h6aD_uvjMNkoKCQLkjGfFEIZzQtjqeRWZVrqMpPagdCkFNyBBMetVlwqgBJCMEobLGaJBsGNlvQMdZfVEs4RdspxZYRwjuWszHOlHRPUuPBXq7WicIF68TTmdUuSMd8exOUfz6_QfnRKbJPm_Bp1_WoNNyG_e33b-PUTEXaleQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60HtSLr4pv9-A1MY_NPo4i1aptKdhCbyW7O4tFaEpJL_56d5O2PkDwNgQSlp1MZjL7zfcB3HAbp8IaD6sQaUBdgeBiLskD4d6fOBIak4pKqdtj7SF9HmWj5bB6NQuDiBX4DENvVmf5ptAL3ypzEZ5kiSvYN2Ero5Rm9bjWuqXiqg_O2BqvE8nbfuv1seuJhdLQy4SHqwf8kFKpMsnDHvRWa6gBJO_holSh_vhFz_jvRe5D82toj_TX6egANnB6CLvf-AaP4K4mFiWzuT-e8S4hhSWzt6Is3FeqzCeazLxqGtFLGU93l7c99IWY-cSWTRg-tAb37WCpoRBMkoiWQcalVizTJhXMyEgJlUdCWeQqyTmzKNAyoyQTEjFHF47COIuaRCFnWon0GBrTYoonQKy0TGrOraUxzeNYKkt5qq37r1VKpngKTb8b41lNkzFebcTZH9evYbs96HbGnafeyznseAf5pmnMLqBRzhd46bJ9qa4qH38C6aGoxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+Power+%26+Energy+Society+General+Meeting&rft.atitle=Online+prediction+of+photovoltaic+power+considering+concept+drift&rft.au=Zhang%2C+Le&rft.au=Zhu%2C+Jizhong&rft.au=Cheung%2C+Kwok&rft.au=Zhou%2C+Jialin&rft.date=2023-07-16&rft.pub=IEEE&rft.eissn=1944-9933&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FPESGM52003.2023.10252625&rft.externalDocID=10252625