Terrain-Relative Navigation with Neuro-Inspired Elevation Encoding

Terrain-relative autonomous navigation is a challenging task. In traditional approaches, an elevation map is carried onboard and compared to measurements of the terrain below the vehicle. These methods are computationally expensive, and it is impractical to store high-quality maps of large swaths of...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ION Position Location and Navigation Symposium pp. 851 - 857
Main Authors Michaelson, Kristen, Wang, Felix, Zanetti, Renato
Format Conference Proceeding
LanguageEnglish
Published IEEE 24.04.2023
Subjects
Online AccessGet full text
ISSN2153-3598
DOI10.1109/PLANS53410.2023.10139925

Cover

Abstract Terrain-relative autonomous navigation is a challenging task. In traditional approaches, an elevation map is carried onboard and compared to measurements of the terrain below the vehicle. These methods are computationally expensive, and it is impractical to store high-quality maps of large swaths of terrain. In this article, we generate position measurements using NeuroGrid, a recently-proposed algorithm for computing position information from terrain elevation measurements. We incorporate NeuroGrid into an inertial navigation scheme using a novel measurement rejection strategy and online covariance computation. Our results show that the NeuroGrid filter provides highly accurate state information over the course of a long trajectory.
AbstractList Terrain-relative autonomous navigation is a challenging task. In traditional approaches, an elevation map is carried onboard and compared to measurements of the terrain below the vehicle. These methods are computationally expensive, and it is impractical to store high-quality maps of large swaths of terrain. In this article, we generate position measurements using NeuroGrid, a recently-proposed algorithm for computing position information from terrain elevation measurements. We incorporate NeuroGrid into an inertial navigation scheme using a novel measurement rejection strategy and online covariance computation. Our results show that the NeuroGrid filter provides highly accurate state information over the course of a long trajectory.
Author Zanetti, Renato
Wang, Felix
Michaelson, Kristen
Author_xml – sequence: 1
  givenname: Kristen
  surname: Michaelson
  fullname: Michaelson, Kristen
  email: kmichaelson@utexas.edu
  organization: The University of Texas at Austin,Dept. of Aerospace Engineering and Engineering Mechanics,Austin,TX,USA
– sequence: 2
  givenname: Felix
  surname: Wang
  fullname: Wang, Felix
  email: felwang@sandia.gov
  organization: Sandia National Laboratories,Center for Computing Research,Albuquerque,NM,USA
– sequence: 3
  givenname: Renato
  surname: Zanetti
  fullname: Zanetti, Renato
  email: renato@utexas.edu
  organization: The University of Texas at Austin,Dept. of Aerospace Engineering and Engineering Mechanics,Austin,TX,USA
BookMark eNo1T0FOwzAQNAgk2tIfcMgHUmyv7cTHUgWoFAUE5Vw58aYYBadyQhC_x1Jh5rAzGmlWMycXvvdISMLoijGqb5_LdfUqQUTPKYcVowy05vKMzJlSUrAs4_yczDiTkILU-RVZDsMHjZAih4zOyN0OQzDOpy_YmdFNmFRmcocoe598u_E9qfAr9OnWD0cX0CZFh9MpLXzTW-cP1-SyNd2Ay7-7IG_3xW7zmJZPD9vNukwdp2JMQSnRxM81RRmJ1lhpdbRtK7O8hrptQAlpwTaaSdEqC0a1tEFmRE6lhgW5OfU6RNwfg_s04Wf_vxl-AZrzTkk
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/PLANS53410.2023.10139925
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665417722
9781665417723
EISSN 2153-3598
EndPage 857
ExternalDocumentID 10139925
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i204t-3664c000b0e5e5eedad5d90b0ff578b3bfc3645d3dc9154f6d3a6f0ce1a480593
IEDL.DBID RIE
IngestDate Wed Aug 27 02:59:12 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-3664c000b0e5e5eedad5d90b0ff578b3bfc3645d3dc9154f6d3a6f0ce1a480593
PageCount 7
ParticipantIDs ieee_primary_10139925
PublicationCentury 2000
PublicationDate 2023-April-24
PublicationDateYYYYMMDD 2023-04-24
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-April-24
  day: 24
PublicationDecade 2020
PublicationTitle IEEE/ION Position Location and Navigation Symposium
PublicationTitleAbbrev PLANS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000548370
Score 2.2339296
Snippet Terrain-relative autonomous navigation is a challenging task. In traditional approaches, an elevation map is carried onboard and compared to measurements of...
SourceID ieee
SourceType Publisher
StartPage 851
SubjectTerms Dictionaries
inertial navigation
kalman filter
Neural networks
neuro-inspired
Noise measurement
Phase measurement
Position measurement
terrain-relative navigation
Time measurement
Trajectory
Title Terrain-Relative Navigation with Neuro-Inspired Elevation Encoding
URI https://ieeexplore.ieee.org/document/10139925
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA66J59UnHinD76mdm0u7aPKxhQtAzfY28jlBERpZXR78Nebk64TBUECIQm05EJyDufyfYRcgzQ6FVzTDKSiDFxGldQFTblhLpMmVYFs4rkU4xl7nPP5Jlk95MIAQAg-gxibwZdva7NCU5m_4QPEUeW7ZFfmok3W2hpUvO6BQC5dtE5S3EyebssX7p_pJEaS8Lj7_AeRSpAjo31SdjNow0fe4lWjY_P5C5zx31M8IP3vlL1oshVGh2QHqiNyN4UlUkDQNuRtDVGp1gFTo64itMBGAZuDPlTobwcbDd-hNdFGw8rU-Kc-mY2G0_sx3ZAm0Nc0YQ3NhGDG74ZOgPsCVlluC991zl9OnWln0PNoM2sKrz45YTMlXGJgoFiO_H7HpFfVFZyQyEjpQOWKK_B6lrOKIbicUlL5KoH8lPRxAxYfLS7Golv72R_j52QPzwF9MSm7IL1muYJLL9IbfRWO8guriKGr
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86D3pSceK3PXhN7dqkWY8qk023MnCD3UY-XkCUVka3g3-9eek6URAkEJIcQj5I3uN9_H6E3IDQKk65ogkISRnYhEqhMhpzzWwidCw92cQoT_tT9jTjs3Wyus-FAQAffAYhNr0v35R6iaYy98I7iKPKt8kOZ4zxOl1rY1Jx2gdCuTTxOlF2Ox7e5S_cfdRRiDThYTPBDyoVL0ke90nerKEOIHkLl5UK9ecveMZ_L_KAtL-T9oLxRhwdki0ojsj9BBZIAkHroLcVBLlceVSNsgjQBht4dA46KNDjDibovUNtpA16hS5xpjaZPvYmD326pk2gr3HEKpqkKdPuNFQE3BUw0nCTua617nmqRFmNvkeTGJ05BcqmJpGpjTR0JOsiw98xaRVlASck0EJYkF3JJThNyxrJEF5OSiFdFUH3lLTxAOYfNTLGvNn72R_j12S3PxkN58NB_nxO9vBO0DMTswvSqhZLuHQCvlJX_lq_AFQlpPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE%2FION+Position+Location+and+Navigation+Symposium&rft.atitle=Terrain-Relative+Navigation+with+Neuro-Inspired+Elevation+Encoding&rft.au=Michaelson%2C+Kristen&rft.au=Wang%2C+Felix&rft.au=Zanetti%2C+Renato&rft.date=2023-04-24&rft.pub=IEEE&rft.eissn=2153-3598&rft.spage=851&rft.epage=857&rft_id=info:doi/10.1109%2FPLANS53410.2023.10139925&rft.externalDocID=10139925