Terrain-Relative Navigation with Neuro-Inspired Elevation Encoding
Terrain-relative autonomous navigation is a challenging task. In traditional approaches, an elevation map is carried onboard and compared to measurements of the terrain below the vehicle. These methods are computationally expensive, and it is impractical to store high-quality maps of large swaths of...
        Saved in:
      
    
          | Published in | IEEE/ION Position Location and Navigation Symposium pp. 851 - 857 | 
|---|---|
| Main Authors | , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        24.04.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2153-3598 | 
| DOI | 10.1109/PLANS53410.2023.10139925 | 
Cover
| Abstract | Terrain-relative autonomous navigation is a challenging task. In traditional approaches, an elevation map is carried onboard and compared to measurements of the terrain below the vehicle. These methods are computationally expensive, and it is impractical to store high-quality maps of large swaths of terrain. In this article, we generate position measurements using NeuroGrid, a recently-proposed algorithm for computing position information from terrain elevation measurements. We incorporate NeuroGrid into an inertial navigation scheme using a novel measurement rejection strategy and online covariance computation. Our results show that the NeuroGrid filter provides highly accurate state information over the course of a long trajectory. | 
    
|---|---|
| AbstractList | Terrain-relative autonomous navigation is a challenging task. In traditional approaches, an elevation map is carried onboard and compared to measurements of the terrain below the vehicle. These methods are computationally expensive, and it is impractical to store high-quality maps of large swaths of terrain. In this article, we generate position measurements using NeuroGrid, a recently-proposed algorithm for computing position information from terrain elevation measurements. We incorporate NeuroGrid into an inertial navigation scheme using a novel measurement rejection strategy and online covariance computation. Our results show that the NeuroGrid filter provides highly accurate state information over the course of a long trajectory. | 
    
| Author | Zanetti, Renato Wang, Felix Michaelson, Kristen  | 
    
| Author_xml | – sequence: 1 givenname: Kristen surname: Michaelson fullname: Michaelson, Kristen email: kmichaelson@utexas.edu organization: The University of Texas at Austin,Dept. of Aerospace Engineering and Engineering Mechanics,Austin,TX,USA – sequence: 2 givenname: Felix surname: Wang fullname: Wang, Felix email: felwang@sandia.gov organization: Sandia National Laboratories,Center for Computing Research,Albuquerque,NM,USA – sequence: 3 givenname: Renato surname: Zanetti fullname: Zanetti, Renato email: renato@utexas.edu organization: The University of Texas at Austin,Dept. of Aerospace Engineering and Engineering Mechanics,Austin,TX,USA  | 
    
| BookMark | eNo1T0FOwzAQNAgk2tIfcMgHUmyv7cTHUgWoFAUE5Vw58aYYBadyQhC_x1Jh5rAzGmlWMycXvvdISMLoijGqb5_LdfUqQUTPKYcVowy05vKMzJlSUrAs4_yczDiTkILU-RVZDsMHjZAih4zOyN0OQzDOpy_YmdFNmFRmcocoe598u_E9qfAr9OnWD0cX0CZFh9MpLXzTW-cP1-SyNd2Ay7-7IG_3xW7zmJZPD9vNukwdp2JMQSnRxM81RRmJ1lhpdbRtK7O8hrptQAlpwTaaSdEqC0a1tEFmRE6lhgW5OfU6RNwfg_s04Wf_vxl-AZrzTkk | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IH CBEJK RIE RIO  | 
    
| DOI | 10.1109/PLANS53410.2023.10139925 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISBN | 1665417722 9781665417723  | 
    
| EISSN | 2153-3598 | 
    
| EndPage | 857 | 
    
| ExternalDocumentID | 10139925 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP M43 OCL RIE RIL RIO  | 
    
| ID | FETCH-LOGICAL-i204t-3664c000b0e5e5eedad5d90b0ff578b3bfc3645d3dc9154f6d3a6f0ce1a480593 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Aug 27 02:59:12 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i204t-3664c000b0e5e5eedad5d90b0ff578b3bfc3645d3dc9154f6d3a6f0ce1a480593 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | ieee_primary_10139925 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-April-24 | 
    
| PublicationDateYYYYMMDD | 2023-04-24 | 
    
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-April-24 day: 24  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | IEEE/ION Position Location and Navigation Symposium | 
    
| PublicationTitleAbbrev | PLANS | 
    
| PublicationYear | 2023 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0000548370 | 
    
| Score | 2.2339296 | 
    
| Snippet | Terrain-relative autonomous navigation is a challenging task. In traditional approaches, an elevation map is carried onboard and compared to measurements of... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 851 | 
    
| SubjectTerms | Dictionaries inertial navigation kalman filter Neural networks neuro-inspired Noise measurement Phase measurement Position measurement terrain-relative navigation Time measurement Trajectory  | 
    
| Title | Terrain-Relative Navigation with Neuro-Inspired Elevation Encoding | 
    
| URI | https://ieeexplore.ieee.org/document/10139925 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA66J59UnHinD76mdm0u7aPKxhQtAzfY28jlBERpZXR78Nebk64TBUECIQm05EJyDufyfYRcgzQ6FVzTDKSiDFxGldQFTblhLpMmVYFs4rkU4xl7nPP5Jlk95MIAQAg-gxibwZdva7NCU5m_4QPEUeW7ZFfmok3W2hpUvO6BQC5dtE5S3EyebssX7p_pJEaS8Lj7_AeRSpAjo31SdjNow0fe4lWjY_P5C5zx31M8IP3vlL1oshVGh2QHqiNyN4UlUkDQNuRtDVGp1gFTo64itMBGAZuDPlTobwcbDd-hNdFGw8rU-Kc-mY2G0_sx3ZAm0Nc0YQ3NhGDG74ZOgPsCVlluC991zl9OnWln0PNoM2sKrz45YTMlXGJgoFiO_H7HpFfVFZyQyEjpQOWKK_B6lrOKIbicUlL5KoH8lPRxAxYfLS7Golv72R_j52QPzwF9MSm7IL1muYJLL9IbfRWO8guriKGr | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86D3pSceK3PXhN7dqkWY8qk023MnCD3UY-XkCUVka3g3-9eek6URAkEJIcQj5I3uN9_H6E3IDQKk65ogkISRnYhEqhMhpzzWwidCw92cQoT_tT9jTjs3Wyus-FAQAffAYhNr0v35R6iaYy98I7iKPKt8kOZ4zxOl1rY1Jx2gdCuTTxOlF2Ox7e5S_cfdRRiDThYTPBDyoVL0ke90nerKEOIHkLl5UK9ecveMZ_L_KAtL-T9oLxRhwdki0ojsj9BBZIAkHroLcVBLlceVSNsgjQBht4dA46KNDjDibovUNtpA16hS5xpjaZPvYmD326pk2gr3HEKpqkKdPuNFQE3BUw0nCTua617nmqRFmNvkeTGJ05BcqmJpGpjTR0JOsiw98xaRVlASck0EJYkF3JJThNyxrJEF5OSiFdFUH3lLTxAOYfNTLGvNn72R_j12S3PxkN58NB_nxO9vBO0DMTswvSqhZLuHQCvlJX_lq_AFQlpPg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE%2FION+Position+Location+and+Navigation+Symposium&rft.atitle=Terrain-Relative+Navigation+with+Neuro-Inspired+Elevation+Encoding&rft.au=Michaelson%2C+Kristen&rft.au=Wang%2C+Felix&rft.au=Zanetti%2C+Renato&rft.date=2023-04-24&rft.pub=IEEE&rft.eissn=2153-3598&rft.spage=851&rft.epage=857&rft_id=info:doi/10.1109%2FPLANS53410.2023.10139925&rft.externalDocID=10139925 |