Citation Recommendations Considering Content and Structural Context Embedding
The number of academic papers being published is increasing exponentially in recent years, and recommending adequate citations to assist researchers in writing papers is a non-trivial task. Conventional approaches may not be optimal, as the recommended papers may already be known to the users, or be...
        Saved in:
      
    
          | Published in | International Conference on Big Data and Smart Computing pp. 1 - 7 | 
|---|---|
| Main Authors | , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.02.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2375-9356 | 
| DOI | 10.1109/BigComp48618.2020.0-109 | 
Cover
| Abstract | The number of academic papers being published is increasing exponentially in recent years, and recommending adequate citations to assist researchers in writing papers is a non-trivial task. Conventional approaches may not be optimal, as the recommended papers may already be known to the users, or be solely relevant to the surrounding context but not other ideas discussed in the manuscript. In this work, we propose a novel embedding algorithm DocCit2Vec, along with the new concept of "structural context", to tackle the aforementioned issues. The proposed approach demonstrates superior performances to baseline models in extensive experiments designed to simulate practical usage scenarios. | 
    
|---|---|
| AbstractList | The number of academic papers being published is increasing exponentially in recent years, and recommending adequate citations to assist researchers in writing papers is a non-trivial task. Conventional approaches may not be optimal, as the recommended papers may already be known to the users, or be solely relevant to the surrounding context but not other ideas discussed in the manuscript. In this work, we propose a novel embedding algorithm DocCit2Vec, along with the new concept of "structural context", to tackle the aforementioned issues. The proposed approach demonstrates superior performances to baseline models in extensive experiments designed to simulate practical usage scenarios. | 
    
| Author | Zhang, Yang Ma, Qiang  | 
    
| Author_xml | – sequence: 1 givenname: Yang surname: Zhang fullname: Zhang, Yang organization: Kyoto University – sequence: 2 givenname: Qiang surname: Ma fullname: Ma, Qiang organization: Kyoto University  | 
    
| BookMark | eNotjNtKw0AURUdRsK39Ah_MDySeMyeZy6OGVoWK4OW5TCbHMtJMSjIF_Xur9WVfFps9FWexjyzENUKBCPbmLmzqvtuVRqEpJEgoID_wEzFFLQ0qoBJOxUSSrnJLlboQ83H8BAC0ykoNE_FUh-RS6GP2wr7vOo7tXx2z-iCh5SHEzW9OHFPmYpu9pmHv035w2yP-Stmia7htD8NLcf7htiPP_30m3peLt_ohXz3fP9a3qzxIoJQzSygJiYxvNLK2ilF6QN-wZ24AW-_YuVIpDaDRGGrAS_SSvKZSVzQTV8ffwMzr3RA6N3yvLWhQVNIPBH5SdA | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/BigComp48618.2020.0-109 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore (NTUSG) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISBN | 1728160340 9781728160344  | 
    
| EISSN | 2375-9356 | 
    
| EndPage | 7 | 
    
| ExternalDocumentID | 9070634 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL  | 
    
| ID | FETCH-LOGICAL-i203t-ee20431338cb71e796e12c01cbeceeb01dcaeaa46670071883b0c21c23c734753 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Aug 27 02:42:22 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i203t-ee20431338cb71e796e12c01cbeceeb01dcaeaa46670071883b0c21c23c734753 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | ieee_primary_9070634 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-Feb. | 
    
| PublicationDateYYYYMMDD | 2020-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-Feb.  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | International Conference on Big Data and Smart Computing | 
    
| PublicationTitleAbbrev | BIGCOMP | 
    
| PublicationYear | 2020 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0001969270 | 
    
| Score | 2.1273832 | 
    
| Snippet | The number of academic papers being published is increasing exponentially in recent years, and recommending adequate citations to assist researchers in writing... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1 | 
    
| SubjectTerms | Citation Recommendation Context modeling Document Embedding Hyper-document Informatics Information Retrieval Link Prediction Mathematical model Neural networks Prediction algorithms Task analysis Writing  | 
    
| Title | Citation Recommendations Considering Content and Structural Context Embedding | 
    
| URI | https://ieeexplore.ieee.org/document/9070634 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH9snjxN3cRvcvBotjTJkvXq2BjCRNDBbiMfrzJknWAH4l9v0nabiAdvJdCmzWt4ecnvA-DWZSGwVhjad9ZTqQTSVGeOeo1aeREW-SJyh6ePajKTD_P-vAF3Oy4MIpbgM-zGy_Is36_dJm6V9UIhFzKqbEJTD1TF1drvp6Qq5ZrVEK6Epb375WucU3Kgkojh4qzLaAk8_GGjUmaRcQum2_4r8Mhbd1PYrvv6Jc343xc8gs6er0eedpnoGBqYn0Bra9hA6vnbhumwVuQmsepchYdVjkofZOvbGW4npWBVXhCTe_JcystGaY6q-bMgo5VFH_vpwGw8ehlOaO2nQJeciYIiRiJsLEqd1QnqVGHCHUtciCOiZYl3Bo2RKlJ3Qs4aCMscTxwXTgsZ6ppTOMjXOZ4ByXjqlUpt_AVkJnSkbhmfSWO48GERcA7tODqL90oyY1EPzMXfzZdwGONTgaGv4CB8Gl6HXF_YmzLI33a4q0I | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pCBeO3PXi0Y2tLy64SDCojJkLCjfTjzRDDMHEkxr_edhtgjAdvS5NtXd-a19f-PhC6MakLrGaKdIy2hAsGJJapIVaCFJa5RT7z3OFkJAYT_jjtTGvodsOFAYACfAaBvyzO8u3SrPxWWdsVci6j8h202-Gcd0q21nZHJRYxlWEF4orCuH03f_WzindF5FFcNAxCUkAPfxipFHnkvoGSdQ9K-MhbsMp1YL5-iTP-t4sHqLVl7OHnTS46RDXIjlBjbdmAqxncREmv0uTGvu5cuIeVnkofeO3c6W7HhWRVlmOVWfxSCMx6cY6y-TPH_YUG69_TQpP7_rg3IJWjApnTkOUEwFNhfVlqtIxAxgIiasLIuEgC6DCyRoFSXHjyjstaXaZDQyNDmZGMu8rmGNWzZQYnCKc0tkLE2v8EPGXSk7eUTblSlFm3DDhFTT86s_dSNGNWDczZ383XaG8wToaz4cPo6Rzt-1iV0OgLVHefCZcu8-f6qgj4N5yfro8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Big+Data+and+Smart+Computing&rft.atitle=Citation+Recommendations+Considering+Content+and+Structural+Context+Embedding&rft.au=Zhang%2C+Yang&rft.au=Ma%2C+Qiang&rft.date=2020-02-01&rft.pub=IEEE&rft.eissn=2375-9356&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FBigComp48618.2020.0-109&rft.externalDocID=9070634 |