Citation Recommendations Considering Content and Structural Context Embedding

The number of academic papers being published is increasing exponentially in recent years, and recommending adequate citations to assist researchers in writing papers is a non-trivial task. Conventional approaches may not be optimal, as the recommended papers may already be known to the users, or be...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Big Data and Smart Computing pp. 1 - 7
Main Authors Zhang, Yang, Ma, Qiang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.02.2020
Subjects
Online AccessGet full text
ISSN2375-9356
DOI10.1109/BigComp48618.2020.0-109

Cover

Abstract The number of academic papers being published is increasing exponentially in recent years, and recommending adequate citations to assist researchers in writing papers is a non-trivial task. Conventional approaches may not be optimal, as the recommended papers may already be known to the users, or be solely relevant to the surrounding context but not other ideas discussed in the manuscript. In this work, we propose a novel embedding algorithm DocCit2Vec, along with the new concept of "structural context", to tackle the aforementioned issues. The proposed approach demonstrates superior performances to baseline models in extensive experiments designed to simulate practical usage scenarios.
AbstractList The number of academic papers being published is increasing exponentially in recent years, and recommending adequate citations to assist researchers in writing papers is a non-trivial task. Conventional approaches may not be optimal, as the recommended papers may already be known to the users, or be solely relevant to the surrounding context but not other ideas discussed in the manuscript. In this work, we propose a novel embedding algorithm DocCit2Vec, along with the new concept of "structural context", to tackle the aforementioned issues. The proposed approach demonstrates superior performances to baseline models in extensive experiments designed to simulate practical usage scenarios.
Author Zhang, Yang
Ma, Qiang
Author_xml – sequence: 1
  givenname: Yang
  surname: Zhang
  fullname: Zhang, Yang
  organization: Kyoto University
– sequence: 2
  givenname: Qiang
  surname: Ma
  fullname: Ma, Qiang
  organization: Kyoto University
BookMark eNotjNtKw0AURUdRsK39Ah_MDySeMyeZy6OGVoWK4OW5TCbHMtJMSjIF_Xur9WVfFps9FWexjyzENUKBCPbmLmzqvtuVRqEpJEgoID_wEzFFLQ0qoBJOxUSSrnJLlboQ83H8BAC0ykoNE_FUh-RS6GP2wr7vOo7tXx2z-iCh5SHEzW9OHFPmYpu9pmHv035w2yP-Stmia7htD8NLcf7htiPP_30m3peLt_ohXz3fP9a3qzxIoJQzSygJiYxvNLK2ilF6QN-wZ24AW-_YuVIpDaDRGGrAS_SSvKZSVzQTV8ffwMzr3RA6N3yvLWhQVNIPBH5SdA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BigComp48618.2020.0-109
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore (NTUSG)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1728160340
9781728160344
EISSN 2375-9356
EndPage 7
ExternalDocumentID 9070634
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-ee20431338cb71e796e12c01cbeceeb01dcaeaa46670071883b0c21c23c734753
IEDL.DBID RIE
IngestDate Wed Aug 27 02:42:22 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-ee20431338cb71e796e12c01cbeceeb01dcaeaa46670071883b0c21c23c734753
PageCount 7
ParticipantIDs ieee_primary_9070634
PublicationCentury 2000
PublicationDate 2020-Feb.
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-Feb.
PublicationDecade 2020
PublicationTitle International Conference on Big Data and Smart Computing
PublicationTitleAbbrev BIGCOMP
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001969270
Score 2.1273832
Snippet The number of academic papers being published is increasing exponentially in recent years, and recommending adequate citations to assist researchers in writing...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Citation Recommendation
Context modeling
Document Embedding
Hyper-document
Informatics
Information Retrieval
Link Prediction
Mathematical model
Neural networks
Prediction algorithms
Task analysis
Writing
Title Citation Recommendations Considering Content and Structural Context Embedding
URI https://ieeexplore.ieee.org/document/9070634
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH9snjxN3cRvcvBotjTJkvXq2BjCRNDBbiMfrzJknWAH4l9v0nabiAdvJdCmzWt4ecnvA-DWZSGwVhjad9ZTqQTSVGeOeo1aeREW-SJyh6ePajKTD_P-vAF3Oy4MIpbgM-zGy_Is36_dJm6V9UIhFzKqbEJTD1TF1drvp6Qq5ZrVEK6Epb375WucU3Kgkojh4qzLaAk8_GGjUmaRcQum2_4r8Mhbd1PYrvv6Jc343xc8gs6er0eedpnoGBqYn0Bra9hA6vnbhumwVuQmsepchYdVjkofZOvbGW4npWBVXhCTe_JcystGaY6q-bMgo5VFH_vpwGw8ehlOaO2nQJeciYIiRiJsLEqd1QnqVGHCHUtciCOiZYl3Bo2RKlJ3Qs4aCMscTxwXTgsZ6ppTOMjXOZ4ByXjqlUpt_AVkJnSkbhmfSWO48GERcA7tODqL90oyY1EPzMXfzZdwGONTgaGv4CB8Gl6HXF_YmzLI33a4q0I
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pCBeO3PXi0Y2tLy64SDCojJkLCjfTjzRDDMHEkxr_edhtgjAdvS5NtXd-a19f-PhC6MakLrGaKdIy2hAsGJJapIVaCFJa5RT7z3OFkJAYT_jjtTGvodsOFAYACfAaBvyzO8u3SrPxWWdsVci6j8h202-Gcd0q21nZHJRYxlWEF4orCuH03f_WzindF5FFcNAxCUkAPfxipFHnkvoGSdQ9K-MhbsMp1YL5-iTP-t4sHqLVl7OHnTS46RDXIjlBjbdmAqxncREmv0uTGvu5cuIeVnkofeO3c6W7HhWRVlmOVWfxSCMx6cY6y-TPH_YUG69_TQpP7_rg3IJWjApnTkOUEwFNhfVlqtIxAxgIiasLIuEgC6DCyRoFSXHjyjstaXaZDQyNDmZGMu8rmGNWzZQYnCKc0tkLE2v8EPGXSk7eUTblSlFm3DDhFTT86s_dSNGNWDczZ383XaG8wToaz4cPo6Rzt-1iV0OgLVHefCZcu8-f6qgj4N5yfro8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Big+Data+and+Smart+Computing&rft.atitle=Citation+Recommendations+Considering+Content+and+Structural+Context+Embedding&rft.au=Zhang%2C+Yang&rft.au=Ma%2C+Qiang&rft.date=2020-02-01&rft.pub=IEEE&rft.eissn=2375-9356&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FBigComp48618.2020.0-109&rft.externalDocID=9070634