Optical Characteristics and Fault Diagnosis of Partial Discharge in C4F7N/CO2 Gas Mixture and SF6 Based on Novel Multispectral Microarray Detection

Optical partial discharge (PD) detection is an efficient means of diagnosing the insulation status of power equipment. C 4 F 7 N/CO 2 gas mixture is a very potential environmentally-friendly SF 6 substitute gas, and its PD optical characteristics need to be studied to guide the PD diagnosis of novel...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on dielectrics and electrical insulation Vol. 29; no. 3; pp. 1079 - 1086
Main Authors Zang, Yiming, Qian, Yong, Zhou, Xiaoli, Niasar, Mohamad Ghaffarian, Sheng, Gehao, Jiang, Xiuchen
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1070-9878
1558-4135
DOI10.1109/TDEI.2022.3168332

Cover

Abstract Optical partial discharge (PD) detection is an efficient means of diagnosing the insulation status of power equipment. C 4 F 7 N/CO 2 gas mixture is a very potential environmentally-friendly SF 6 substitute gas, and its PD optical characteristics need to be studied to guide the PD diagnosis of novel C 4 F 7 N/CO 2 equipment. Therefore, this article proposes a multispectral microarray detection technology, which can achieve high-sensitivity detection and PD diagnosis by simultaneously collecting the spectral characteristics of multiple bands. By setting up an experimental platform, the PD experiments of four typical defects in the C 4 F 7 N/CO 2 gas mixture with five different proportions and pure SF 6 are carried out. Based on the analysis of PD multispectral features, the correlation between different gases and the difference between different defects are obtained. Finally, by combining multispectral detection with a <inline-formula> <tex-math notation="LaTeX">{t} </tex-math></inline-formula>-distributed stochastic neighbor embedding (T-SNE) feature extraction algorithm, a PD diagnosis method that can adapt to both C 4 F 7 N/CO 2 gas mixture and SF 6 is proposed, which provides a reference for the PD detection of novel C 4 F 7 N/CO 2 equipment application.
AbstractList Optical partial discharge (PD) detection is an efficient means of diagnosing the insulation status of power equipment. C 4 F 7 N/CO 2 gas mixture is a very potential environmentally-friendly SF 6 substitute gas, and its PD optical characteristics need to be studied to guide the PD diagnosis of novel C 4 F 7 N/CO 2 equipment. Therefore, this article proposes a multispectral microarray detection technology, which can achieve high-sensitivity detection and PD diagnosis by simultaneously collecting the spectral characteristics of multiple bands. By setting up an experimental platform, the PD experiments of four typical defects in the C 4 F 7 N/CO 2 gas mixture with five different proportions and pure SF 6 are carried out. Based on the analysis of PD multispectral features, the correlation between different gases and the difference between different defects are obtained. Finally, by combining multispectral detection with a <inline-formula> <tex-math notation="LaTeX">{t} </tex-math></inline-formula>-distributed stochastic neighbor embedding (T-SNE) feature extraction algorithm, a PD diagnosis method that can adapt to both C 4 F 7 N/CO 2 gas mixture and SF 6 is proposed, which provides a reference for the PD detection of novel C 4 F 7 N/CO 2 equipment application.
Optical partial discharge (PD) detection is an efficient means of diagnosing the insulation status of power equipment. C4F7N/CO2 gas mixture is a very potential environmentally-friendly SF6 substitute gas, and its PD optical characteristics need to be studied to guide the PD diagnosis of novel C4F7N/CO2 equipment. Therefore, this article proposes a multispectral microarray detection technology, which can achieve high-sensitivity detection and PD diagnosis by simultaneously collecting the spectral characteristics of multiple bands. By setting up an experimental platform, the PD experiments of four typical defects in the C4F7N/CO2 gas mixture with five different proportions and pure SF6 are carried out. Based on the analysis of PD multispectral features, the correlation between different gases and the difference between different defects are obtained. Finally, by combining multispectral detection with a [Formula Omitted]-distributed stochastic neighbor embedding (T-SNE) feature extraction algorithm, a PD diagnosis method that can adapt to both C4F7N/CO2 gas mixture and SF6 is proposed, which provides a reference for the PD detection of novel C4F7N/CO2 equipment application.
Author Qian, Yong
Zang, Yiming
Zhou, Xiaoli
Sheng, Gehao
Niasar, Mohamad Ghaffarian
Jiang, Xiuchen
Author_xml – sequence: 1
  givenname: Yiming
  orcidid: 0000-0002-1370-8820
  surname: Zang
  fullname: Zang, Yiming
  email: zangyiming@sjtu.edu.cn
  organization: Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Yong
  orcidid: 0000-0001-6046-7110
  surname: Qian
  fullname: Qian, Yong
  email: qian_yong@sjtu.edu.cn
  organization: Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Xiaoli
  orcidid: 0000-0001-8659-7482
  surname: Zhou
  fullname: Zhou, Xiaoli
  email: zhouxl@fudan.edu.cn
  organization: Department of Light Sources and Illuminating Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
– sequence: 4
  givenname: Mohamad Ghaffarian
  surname: Niasar
  fullname: Niasar, Mohamad Ghaffarian
  email: m.ghaffarianniasar@tudelft.nl
  organization: Electrical Sustainable Energy Department, Delft University of Technology, CD Delft, The Netherlands
– sequence: 5
  givenname: Gehao
  orcidid: 0000-0002-9454-5284
  surname: Sheng
  fullname: Sheng, Gehao
  email: shenghe@sjtu.edu.cn
  organization: Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 6
  givenname: Xiuchen
  orcidid: 0000-0001-5439-6942
  surname: Jiang
  fullname: Jiang, Xiuchen
  email: xcjiang@sjtu.edu.cn
  organization: Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
BookMark eNotjctOwzAQRS1UJNrCByA2llin9SNx4iWkDyr1gURZV04yLq5KXGwH0e_gh7GA1YzuPXNmgHqtbQGhW0pGlBI53k6mixEjjI04FQXn7AL1aZYVSUp51os7yUkii7y4QgPvD4TQNGOij743p2BqdcTlm3KqDuCMj4HHqm3wTHXHgCdG7VvrjcdW42flgon4xPg6XuwBmxaX6Sxfj8sNw3Pl8cp8hc7Br-FlJvCj8tBg2-K1_YQjXkWn8Seog4uelamdVc6pM55AiKGx7TW61Oro4eZ_DtHrbLotn5LlZr4oH5aJYYSHBCrKNKkE1UwqnTeKsbQQEiTR0HDCm1jrtK6agoCua6pYVelGaCEJEzlp-BDd_3lPzn504MPuYDvXxpc7JgoqMy5JGqm7P8oAwO7kzLty553MBeGS8x8P6HOg
CODEN ITDIES
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
7SP
8FD
L7M
DOI 10.1109/TDEI.2022.3168332
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-4135
EndPage 1086
ExternalDocumentID 9760393
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62075045
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
7SP
8FD
L7M
ID FETCH-LOGICAL-i203t-eb12f0b61f29af7da224869e90fed303d12ff4cbd80efcc1a2bbfd6f6902670d3
IEDL.DBID RIE
ISSN 1070-9878
IngestDate Mon Jun 30 06:22:39 EDT 2025
Wed Aug 27 02:23:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-eb12f0b61f29af7da224869e90fed303d12ff4cbd80efcc1a2bbfd6f6902670d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9454-5284
0000-0001-8659-7482
0000-0002-1370-8820
0000-0001-6046-7110
0000-0001-5439-6942
PQID 2681953904
PQPubID 75745
PageCount 8
ParticipantIDs proquest_journals_2681953904
ieee_primary_9760393
PublicationCentury 2000
PublicationDate 2022-June
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on dielectrics and electrical insulation
PublicationTitleAbbrev T-DEI
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
SSID ssj0014526
Score 2.4233057
Snippet Optical partial discharge (PD) detection is an efficient means of diagnosing the insulation status of power equipment. C 4 F 7 N/CO 2 gas mixture is a very...
Optical partial discharge (PD) detection is an efficient means of diagnosing the insulation status of power equipment. C4F7N/CO2 gas mixture is a very...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1079
SubjectTerms Algorithms
Carbon dioxide
C₄F₇N/CO₂ gas mixture
Defects
Discharge
Fault diagnosis
Feature extraction
Gas mixtures
Gases
Insulation
Integrated optics
multispectral microarray detection
Optical attenuators
Optical buffering
optical characteristic
Optical filters
Optical properties
Optical sensors
partial discharge (PD)
Partial discharges
Title Optical Characteristics and Fault Diagnosis of Partial Discharge in C4F7N/CO2 Gas Mixture and SF6 Based on Novel Multispectral Microarray Detection
URI https://ieeexplore.ieee.org/document/9760393
https://www.proquest.com/docview/2681953904
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-4135
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014526
  issn: 1070-9878
  databaseCode: RIE
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BUiV6KC20Kq9qDj02u46T2MkRdkmh0i6VChK3lZ9SVJSgTbai_Rv8YWwnIFp64BbJsWXZY8-M5_tmAD4nPM6UtlkkRWGiVGsdFVmeRJQzbgotMpt67vBszk4v029X2dUafHnkwhhjAvjMjPxniOXrRq38U9nYqU5PJV2HdZ6znqv1GDHwpbJ7fCGJnB-dDxHMmBTji-nJmfMEKR35Kk2JrzQSKqk8u36DTim3YPYwmx5K8nO06uRI_fknUeNLp_sW3gzGJR710vAO1ky9Da-fpBzchlcB8qnaHbg7vwnv2Dj5O2czilpjKVbXHU57HF7VYmPxuxcy9_u0akN6JYNVjZO05PPx5JziV9HirLr1AYkwwo-S4bFTkRqbGufNL3ONgewbqJ1LN87MQwHFcil-49R0ARFWv4fL8uRichoNJRqiipKki9xNTy2RLLa0EJZr4SyCnBWmINZopx21a7apkjonxioVCyql1cw6n5wyTnTyATbqpjYfAalMbKozprJEprl2e5gYIuJcmTwWnItd2PFLvLjps3AshtXdhYOHTVwMx69dUBbCgwVJ9_7fax82vUD0mK8D2OiWK3PorItOfgpidQ8i8c7_
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQceLQgSgv4wJHsOo7tJMd2t2ELzRaJrdRb5KcUUSXVJouAv8Efru2kFa8Dt0iOLcsee2Y83zcD8DZJY6a0ZZEUuYmo1jrKWZZEJOWpybVglnrucLnki3P64YJdbMG7Wy6MMSaAz8zEf4ZYvm7Vxj-VTZ3q9FTSO3CXUUrZwNa6jRn4YtkDwhBHzpPOxhhmjPPpan584nxBQia-TlPia42EWip_XcBBqxSPobyZzwAm-TLZ9HKifvyRqvF_J_wEHo3mJToc5OEpbJlmBx7-knRwB-4F0KfqduHn2VV4yUaz37M2I9FoVIjNZY_mAxKv7lBr0ScvZu73ed2FBEsG1Q2a0SJdTmdnBL0XHSrrbz4kEUb4XHB05JSkRm2Dlu1Xc4kC3TeQO9dunNKDAcV6Lb6juekDJqx5BufF8Wq2iMYiDVFNcNJH7q4nFkseW5ILm2rhbIKM5ybH1minH7VrtlRJnWFjlYoFkdJqbp1XTniKdfIctpu2MS8AEZlYqhlXLJE0024PE4NFnCmTxSJNxR7s-iWuroY8HNW4untwcLOJ1XgAu4rwECDMMX35715v4P5iVZ5WpyfLj_vwwAvHgAA7gO1-vTGvnK3Ry9dBxK4BIdDSTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+Characteristics+and+Fault+Diagnosis+of+Partial+Discharge+in+C4F7N%2FCO2+Gas+Mixture+and+SF6+Based+on+Novel+Multispectral+Microarray+Detection&rft.jtitle=IEEE+transactions+on+dielectrics+and+electrical+insulation&rft.au=Zang%2C+Yiming&rft.au=Qian%2C+Yong&rft.au=Zhou%2C+Xiaoli&rft.au=Mohamad+Ghaffarian+Niasar&rft.date=2022-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1070-9878&rft.eissn=1558-4135&rft.volume=29&rft.issue=3&rft.spage=1079&rft_id=info:doi/10.1109%2FTDEI.2022.3168332&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9878&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9878&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9878&client=summon