An Array Interpolation Based Compressive Sensing DOA Method for Sparse Array

The CS (Compressive Sensing) DOA (Direction of Arrival) methods usually require large number of sensors and subject to the manifold ambiguity brought by the sparse array. To solve this problem, an array interpolation based compressive sensing DOA method is proposed in this paper. Firstly, multiple s...

Full description

Saved in:
Bibliographic Details
Published in2019 3rd International Conference on Imaging, Signal Processing and Communication (ICISPC) pp. 24 - 27
Main Authors Cui, Ao, Xu, Teng, Yu, Weichuang, He, Peiyu, Xu, Zili
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2019
Subjects
Online AccessGet full text
DOI10.1109/ICISPC.2019.8935709

Cover

Abstract The CS (Compressive Sensing) DOA (Direction of Arrival) methods usually require large number of sensors and subject to the manifold ambiguity brought by the sparse array. To solve this problem, an array interpolation based compressive sensing DOA method is proposed in this paper. Firstly, multiple strategies were applied to interpolate the sparse array with virtual elements to construct a virtual uniform array. Then apply the compressive sensing DOA method on this virtual array to obtain the DOA estimators. Comparing with the actual sparse array, the virtual one has more elements that de-singulars the manifold matrix, which implies satisfaction to the RIP (Restricted Isometry Property) condition. Simulation results demonstrate that our method can achieve DOAs for coherent signals with sparse array under small snapshots and low SNR.
AbstractList The CS (Compressive Sensing) DOA (Direction of Arrival) methods usually require large number of sensors and subject to the manifold ambiguity brought by the sparse array. To solve this problem, an array interpolation based compressive sensing DOA method is proposed in this paper. Firstly, multiple strategies were applied to interpolate the sparse array with virtual elements to construct a virtual uniform array. Then apply the compressive sensing DOA method on this virtual array to obtain the DOA estimators. Comparing with the actual sparse array, the virtual one has more elements that de-singulars the manifold matrix, which implies satisfaction to the RIP (Restricted Isometry Property) condition. Simulation results demonstrate that our method can achieve DOAs for coherent signals with sparse array under small snapshots and low SNR.
Author Xu, Teng
Yu, Weichuang
He, Peiyu
Cui, Ao
Xu, Zili
Author_xml – sequence: 1
  givenname: Ao
  surname: Cui
  fullname: Cui, Ao
  organization: College of Electronics and Information Engineering, Sichuan University,Chengdu,China
– sequence: 2
  givenname: Teng
  surname: Xu
  fullname: Xu, Teng
  organization: College of Electronics and Information Engineering, Sichuan University,Chengdu,China
– sequence: 3
  givenname: Weichuang
  surname: Yu
  fullname: Yu, Weichuang
  organization: College of Electronics and Information Engineering, Sichuan University,Chengdu,China
– sequence: 4
  givenname: Peiyu
  surname: He
  fullname: He, Peiyu
  organization: College of Electronics and Information Engineering, Sichuan University,Chengdu,China
– sequence: 5
  givenname: Zili
  surname: Xu
  fullname: Xu, Zili
  organization: Research and Development Center, The Second Research Institute of CAAC,Chengdu,China
BookMark eNotz7tOwzAYQGEjwUALT9DFL5DgS2zHYzCXRgoqUmCu3Pg3WGrtyI6Q-vYM7XS2TzordBtTBIQ2lNSUEv3Um378NDUjVNet5kIRfYNWVLGWcim5vEdDF3GXsz3jPi6Q53S0S0gRP9sCDpt0mjOUEv4AjxBLiD_4ZdfhD1h-k8M-ZTzONhe4GA_ozttjgcdr1-j77fXLbKth996bbqgCI3ypoJ0aIAdFmJDcC8fs5BvrwDJxELTxHIhQjfZUq8lN0ruWy4m1IK0ikjrJ12hzcQMA7OccTjaf99dB_g94y0qF
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICISPC.2019.8935709
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728136636
9781728136639
EndPage 27
ExternalDocumentID 8935709
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-e8c4e0b702563f5d2acf4adea25b514f3e05749f197cdc6fd836c28e6a7061d63
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:19 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-e8c4e0b702563f5d2acf4adea25b514f3e05749f197cdc6fd836c28e6a7061d63
PageCount 4
ParticipantIDs ieee_primary_8935709
PublicationCentury 2000
PublicationDate 2019-July
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-July
PublicationDecade 2010
PublicationTitle 2019 3rd International Conference on Imaging, Signal Processing and Communication (ICISPC)
PublicationTitleAbbrev ICISPC
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.740681
Snippet The CS (Compressive Sensing) DOA (Direction of Arrival) methods usually require large number of sensors and subject to the manifold ambiguity brought by the...
SourceID ieee
SourceType Publisher
StartPage 24
SubjectTerms array interpolation
coherent signal
Compressed sensing
compressive sensing
Direction-of-arrival estimation
DOA
Interpolation
Manifolds
Signal to noise ratio
Simulation
sparse array
Sparse matrices
Title An Array Interpolation Based Compressive Sensing DOA Method for Sparse Array
URI https://ieeexplore.ieee.org/document/8935709
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1qT55UWvGbPXg0bTabj-2xFksrRgq10FvZj1kRIS0hFfTXO5uNFcWDl7CEkA07LO_N5r0ZQq6BMdAJM0HM3EXoMJAxh0AYGQllw8hoZxTOH9PJIr5fJssWudl5YQCgFp9Bzw3rf_lmrbfuqKyP2Jpkzq23l4nUe7WaQkIsHPSno-l8NnJqLQy_f_JHy5QaMcYHJP-aywtFXnvbSvX0x68yjP_9mEPS_fbm0dkOdY5IC4oOeRgWdFiW8p16EeHaK9zoLWKUoW7P13LXN6BzJ1gvninmhDSvu0dTpK10vsEEF_w7umQxvnsaTYKmT0LwEoW8CkDoGEKVOfrCbWIiqW0sDcgoUciHLAckZfHAskGmjU6tETzVkYBUZojmJuXHpF2sCzgh1ALuT8WBScxWdaIVD40U3CCvYjiJOiUdtxKrjS-FsWoW4ezv2-dk30XDq1svSLsqt3CJGF6pqzp4n74tnxU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1jHvSksom_zcGj3ZomabPjHI5N1zHYBruN_PgqIrRjdIL-9SbNnCgevJRSShOShve-5L3vQ-gWCAHNiQkYcRehw0AyCoEwMhIqCyOjnVE4HceDOXtc8EUN3e28MABQic-g5W6rs3xT6I3bKmtbbOWJc-vtccYY926tbSohEnbaw95wOuk5vZb9Afy7P4qmVJjRP0TpV2teKvLa2pSqpT9-JWL8b3eOUPPbnYcnO9w5RjXIG2jUzXF3vZbv2MsIC69xw_cWpQx2q74SvL4BnjrJev6MbVSI06p-NLbEFU9XNsQF_40mmvcfZr1BsK2UELxEIS0DEJpBqBJHYGjGTSR1xqQBGXFlGVFGwdIy1slIJ9FGx5kRNNaRgFgmFs9NTE9QPS9yOEU4A7tCFQUibbyquVY0NFJQY5kVsY2oM9RwI7Fc-WQYy-0gnP_9-AbtD2bpaDkajp8u0IGbGa91vUT1cr2BK4vopbquJvITQiqiYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+3rd+International+Conference+on+Imaging%2C+Signal+Processing+and+Communication+%28ICISPC%29&rft.atitle=An+Array+Interpolation+Based+Compressive+Sensing+DOA+Method+for+Sparse+Array&rft.au=Cui%2C+Ao&rft.au=Xu%2C+Teng&rft.au=Yu%2C+Weichuang&rft.au=He%2C+Peiyu&rft.date=2019-07-01&rft.pub=IEEE&rft.spage=24&rft.epage=27&rft_id=info:doi/10.1109%2FICISPC.2019.8935709&rft.externalDocID=8935709