Environment Aware Adaptive Q-Learning to Deploy SFC on Edge Computing
Biggest challenge in deploying Service Function Chain (SFC) in the Edge Computing environment is the lack of resources at the edge. Hence while finding the optimum path for SFC deployment, the resource constraint environment should be observed and incorporated well in deployment scenarios. In this p...
Saved in:
| Published in | International Conference on Network and Service Management (Print) pp. 1 - 5 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IFIP
02.11.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2165-963X |
| DOI | 10.23919/CNSM50824.2020.9269046 |
Cover
| Abstract | Biggest challenge in deploying Service Function Chain (SFC) in the Edge Computing environment is the lack of resources at the edge. Hence while finding the optimum path for SFC deployment, the resource constraint environment should be observed and incorporated well in deployment scenarios. In this paper, we developed an environment aware adaptive Q-Learning algorithm to find an optimal SFC deployment path in edge computing environment. The available servers are divided into hierarchical network structure with local, neighbor, and datacenter servers to model an edge computing environment. The resource dynamics in the environment is modeled as a state transition probability. We compared the new algorithm with our base case algorithm that solely depends on Q-Learning and doesn't incorporate the state transition probabilities. An intuitive reward function is designed to give maximum reward to complex deployment with minimum delays. We integrated our algorithm with physical testbeds using OpenStack and open source REST APIs. We evaluated SFC deployment on physical testbed using 42 different scenarios by measuring RTT. |
|---|---|
| AbstractList | Biggest challenge in deploying Service Function Chain (SFC) in the Edge Computing environment is the lack of resources at the edge. Hence while finding the optimum path for SFC deployment, the resource constraint environment should be observed and incorporated well in deployment scenarios. In this paper, we developed an environment aware adaptive Q-Learning algorithm to find an optimal SFC deployment path in edge computing environment. The available servers are divided into hierarchical network structure with local, neighbor, and datacenter servers to model an edge computing environment. The resource dynamics in the environment is modeled as a state transition probability. We compared the new algorithm with our base case algorithm that solely depends on Q-Learning and doesn't incorporate the state transition probabilities. An intuitive reward function is designed to give maximum reward to complex deployment with minimum delays. We integrated our algorithm with physical testbeds using OpenStack and open source REST APIs. We evaluated SFC deployment on physical testbed using 42 different scenarios by measuring RTT. |
| Author | Hong, James W. Yoo, Jae-Hyung Pandey, Suman |
| Author_xml | – sequence: 1 givenname: Suman surname: Pandey fullname: Pandey, Suman email: suman17july@gmail.com organization: POSTECH,Pohang,South Korea – sequence: 2 givenname: James W. surname: Hong fullname: Hong, James W. email: jwkhong@postech.ac.kr organization: POSTECH,Pohang,South Korea – sequence: 3 givenname: Jae-Hyung surname: Yoo fullname: Yoo, Jae-Hyung email: jhyoo78@postech.ac.kr organization: POSTECH,Pohang,South Korea |
| BookMark | eNotj9FKwzAYhaMoOGefwAvzAp1p_iZNLkvtVKiKTMG7kaZ_R2RNS1sne3sD7uJwLj44fOeaXPjeIyF3CVtx0Im-L143L4Ipnq4442yludQslWck0pkCzSDJZMg5WfBEilhL-Loi0TR9MxaYUlqJBSlLf3Bj7zv0M81_zYg0b8wwuwPS97hCM3rnd3Tu6QMO-_5IN-uC9p6WzQ5p0XfDzxz4DblszX7C6NRL8rkuP4qnuHp7fC7yKnacwRxj8LDGKkDBbRMsU40c0dQtttZqLYArYTIAbjImWcMs1ibjwVSp2oKFJbn933WIuB1G15nxuD0dhz9DJk6t |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.23919/CNSM50824.2020.9269046 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9783903176317 3903176311 |
| EISSN | 2165-963X |
| EndPage | 5 |
| ExternalDocumentID | 9269046 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
| ID | FETCH-LOGICAL-i203t-e165cac83e52cd97849e2eeabfefcc9953285a7332a7060d0ceba7289888bc3c3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:29:33 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-e165cac83e52cd97849e2eeabfefcc9953285a7332a7060d0ceba7289888bc3c3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9269046 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Nov.-2 |
| PublicationDateYYYYMMDD | 2020-11-02 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-Nov.-2 day: 02 |
| PublicationDecade | 2020 |
| PublicationTitle | International Conference on Network and Service Management (Print) |
| PublicationTitleAbbrev | CNSM |
| PublicationYear | 2020 |
| Publisher | IFIP |
| Publisher_xml | – name: IFIP |
| SSID | ssj0003188985 |
| Score | 1.7627296 |
| Snippet | Biggest challenge in deploying Service Function Chain (SFC) in the Edge Computing environment is the lack of resources at the edge. Hence while finding the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Computational modeling Edge computing Heuristic algorithms Machine learning algorithms Network topology OpenStack Q-Learning Reinforcement Learning SDN Servers SFC Topology |
| Title | Environment Aware Adaptive Q-Learning to Deploy SFC on Edge Computing |
| URI | https://ieeexplore.ieee.org/document/9269046 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFL1se9IXPzbxmzz4aLs16Vcex-wYwoYyB3sbSXozRGjHaBH89SZt3VR88K20lJYk9OTc3nMOwB01bC2WCp3UYLPje9oGufu-E0rUUhnQwMqBbzoLJwv_cRksW3C_08IgYtV8hq49rP7lp7kqbamsz6nhcn7YhnYUh7VWa1dPMWsz5nFQt3BRxj3eH83mU7P_oLZ0Qgduc_ePGJUKRcZHMP16ft088uaWhXTVxy9rxv--4DH09no98rRDohNoYXYKh9-sBruQJHtFGxm-iy2SYSo29mNHnp3GZXVNipw8oM0AJvPxiOQZSdI1kjr6wVzvwWKcvIwmThOh4LzSASsc9MJACRUzDKhKDWP0OVJEITVqpTgPGI0DETFGhbXRSQcKpYgMCTPEWCqm2Bl0sjzDcyCGp7FImA2epyM_jDVXXFOhUs3CSDHkF9C1A7La1C4Zq2YsLv8-fQUHdlIqVR-9hk6xLfHGwHshb6t5_QTBaaQ5 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1zHtSLP6b42xw82m5LmrY5jtkxdR3KNthtJOmXIUI7RofgX2_S1k3Fg7fS0hKS0pf39XvvIXRLDFsLpQInMdjseG1tg9w9z_ElaKkMaEDhwBcP_f7Ee5yyaQ3drbUwAFA0n4FrD4t_-UmmVrZU1uTEcDnP30LbzDyPlWqtdUXFvJ0hD1nZxEUob_NmdziKzQ6E2OIJabnV_T-CVAoc6e2j-GsEZfvIm7vKpas-fpkz_neIB-h4o9jDz2ssOkQ1SI_Q3jezwQaKoo2mDXfexRJwJxEL-7nDL07lszrHeYbvwaYA41Gvi7MUR8kccBn-YK4fo0kvGnf7ThWi4LySFs0daPtMCRVSYEQlhjN6HAiAkBq0UpwzSkImAkqJsEY6SUuBFIGhYYYaS0UVPUH1NEvhFGHD1GggzBavrQPPDzVXXBOhEk39QFHgZ6hhJ2S2KH0yZtVcnP99-gbt9MfxYDZ4GD5doF27QIXGj1yier5cwZUB-1xeF2v8CY1bp4Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Network+and+Service+Management+%28Print%29&rft.atitle=Environment+Aware+Adaptive+Q-Learning+to+Deploy+SFC+on+Edge+Computing&rft.au=Pandey%2C+Suman&rft.au=Hong%2C+James+W.&rft.au=Yoo%2C+Jae-Hyung&rft.date=2020-11-02&rft.pub=IFIP&rft.eissn=2165-963X&rft.spage=1&rft.epage=5&rft_id=info:doi/10.23919%2FCNSM50824.2020.9269046&rft.externalDocID=9269046 |