Environment Aware Adaptive Q-Learning to Deploy SFC on Edge Computing

Biggest challenge in deploying Service Function Chain (SFC) in the Edge Computing environment is the lack of resources at the edge. Hence while finding the optimum path for SFC deployment, the resource constraint environment should be observed and incorporated well in deployment scenarios. In this p...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Network and Service Management (Print) pp. 1 - 5
Main Authors Pandey, Suman, Hong, James W., Yoo, Jae-Hyung
Format Conference Proceeding
LanguageEnglish
Published IFIP 02.11.2020
Subjects
Online AccessGet full text
ISSN2165-963X
DOI10.23919/CNSM50824.2020.9269046

Cover

Abstract Biggest challenge in deploying Service Function Chain (SFC) in the Edge Computing environment is the lack of resources at the edge. Hence while finding the optimum path for SFC deployment, the resource constraint environment should be observed and incorporated well in deployment scenarios. In this paper, we developed an environment aware adaptive Q-Learning algorithm to find an optimal SFC deployment path in edge computing environment. The available servers are divided into hierarchical network structure with local, neighbor, and datacenter servers to model an edge computing environment. The resource dynamics in the environment is modeled as a state transition probability. We compared the new algorithm with our base case algorithm that solely depends on Q-Learning and doesn't incorporate the state transition probabilities. An intuitive reward function is designed to give maximum reward to complex deployment with minimum delays. We integrated our algorithm with physical testbeds using OpenStack and open source REST APIs. We evaluated SFC deployment on physical testbed using 42 different scenarios by measuring RTT.
AbstractList Biggest challenge in deploying Service Function Chain (SFC) in the Edge Computing environment is the lack of resources at the edge. Hence while finding the optimum path for SFC deployment, the resource constraint environment should be observed and incorporated well in deployment scenarios. In this paper, we developed an environment aware adaptive Q-Learning algorithm to find an optimal SFC deployment path in edge computing environment. The available servers are divided into hierarchical network structure with local, neighbor, and datacenter servers to model an edge computing environment. The resource dynamics in the environment is modeled as a state transition probability. We compared the new algorithm with our base case algorithm that solely depends on Q-Learning and doesn't incorporate the state transition probabilities. An intuitive reward function is designed to give maximum reward to complex deployment with minimum delays. We integrated our algorithm with physical testbeds using OpenStack and open source REST APIs. We evaluated SFC deployment on physical testbed using 42 different scenarios by measuring RTT.
Author Hong, James W.
Yoo, Jae-Hyung
Pandey, Suman
Author_xml – sequence: 1
  givenname: Suman
  surname: Pandey
  fullname: Pandey, Suman
  email: suman17july@gmail.com
  organization: POSTECH,Pohang,South Korea
– sequence: 2
  givenname: James W.
  surname: Hong
  fullname: Hong, James W.
  email: jwkhong@postech.ac.kr
  organization: POSTECH,Pohang,South Korea
– sequence: 3
  givenname: Jae-Hyung
  surname: Yoo
  fullname: Yoo, Jae-Hyung
  email: jhyoo78@postech.ac.kr
  organization: POSTECH,Pohang,South Korea
BookMark eNotj9FKwzAYhaMoOGefwAvzAp1p_iZNLkvtVKiKTMG7kaZ_R2RNS1sne3sD7uJwLj44fOeaXPjeIyF3CVtx0Im-L143L4Ipnq4442yludQslWck0pkCzSDJZMg5WfBEilhL-Loi0TR9MxaYUlqJBSlLf3Bj7zv0M81_zYg0b8wwuwPS97hCM3rnd3Tu6QMO-_5IN-uC9p6WzQ5p0XfDzxz4DblszX7C6NRL8rkuP4qnuHp7fC7yKnacwRxj8LDGKkDBbRMsU40c0dQtttZqLYArYTIAbjImWcMs1ibjwVSp2oKFJbn933WIuB1G15nxuD0dhz9DJk6t
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/CNSM50824.2020.9269046
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9783903176317
3903176311
EISSN 2165-963X
EndPage 5
ExternalDocumentID 9269046
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-e165cac83e52cd97849e2eeabfefcc9953285a7332a7060d0ceba7289888bc3c3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:29:33 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-e165cac83e52cd97849e2eeabfefcc9953285a7332a7060d0ceba7289888bc3c3
PageCount 5
ParticipantIDs ieee_primary_9269046
PublicationCentury 2000
PublicationDate 2020-Nov.-2
PublicationDateYYYYMMDD 2020-11-02
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-Nov.-2
  day: 02
PublicationDecade 2020
PublicationTitle International Conference on Network and Service Management (Print)
PublicationTitleAbbrev CNSM
PublicationYear 2020
Publisher IFIP
Publisher_xml – name: IFIP
SSID ssj0003188985
Score 1.7627296
Snippet Biggest challenge in deploying Service Function Chain (SFC) in the Edge Computing environment is the lack of resources at the edge. Hence while finding the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computational modeling
Edge computing
Heuristic algorithms
Machine learning algorithms
Network topology
OpenStack
Q-Learning
Reinforcement Learning
SDN
Servers
SFC
Topology
Title Environment Aware Adaptive Q-Learning to Deploy SFC on Edge Computing
URI https://ieeexplore.ieee.org/document/9269046
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFL1se9IXPzbxmzz4aLs16Vcex-wYwoYyB3sbSXozRGjHaBH89SZt3VR88K20lJYk9OTc3nMOwB01bC2WCp3UYLPje9oGufu-E0rUUhnQwMqBbzoLJwv_cRksW3C_08IgYtV8hq49rP7lp7kqbamsz6nhcn7YhnYUh7VWa1dPMWsz5nFQt3BRxj3eH83mU7P_oLZ0Qgduc_ePGJUKRcZHMP16ft088uaWhXTVxy9rxv--4DH09no98rRDohNoYXYKh9-sBruQJHtFGxm-iy2SYSo29mNHnp3GZXVNipw8oM0AJvPxiOQZSdI1kjr6wVzvwWKcvIwmThOh4LzSASsc9MJACRUzDKhKDWP0OVJEITVqpTgPGI0DETFGhbXRSQcKpYgMCTPEWCqm2Bl0sjzDcyCGp7FImA2epyM_jDVXXFOhUs3CSDHkF9C1A7La1C4Zq2YsLv8-fQUHdlIqVR-9hk6xLfHGwHshb6t5_QTBaaQ5
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1zHtSLP6b42xw82m5LmrY5jtkxdR3KNthtJOmXIUI7RofgX2_S1k3Fg7fS0hKS0pf39XvvIXRLDFsLpQInMdjseG1tg9w9z_ElaKkMaEDhwBcP_f7Ee5yyaQ3drbUwAFA0n4FrD4t_-UmmVrZU1uTEcDnP30LbzDyPlWqtdUXFvJ0hD1nZxEUob_NmdziKzQ6E2OIJabnV_T-CVAoc6e2j-GsEZfvIm7vKpas-fpkz_neIB-h4o9jDz2ssOkQ1SI_Q3jezwQaKoo2mDXfexRJwJxEL-7nDL07lszrHeYbvwaYA41Gvi7MUR8kccBn-YK4fo0kvGnf7ThWi4LySFs0daPtMCRVSYEQlhjN6HAiAkBq0UpwzSkImAkqJsEY6SUuBFIGhYYYaS0UVPUH1NEvhFGHD1GggzBavrQPPDzVXXBOhEk39QFHgZ6hhJ2S2KH0yZtVcnP99-gbt9MfxYDZ4GD5doF27QIXGj1yier5cwZUB-1xeF2v8CY1bp4Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Network+and+Service+Management+%28Print%29&rft.atitle=Environment+Aware+Adaptive+Q-Learning+to+Deploy+SFC+on+Edge+Computing&rft.au=Pandey%2C+Suman&rft.au=Hong%2C+James+W.&rft.au=Yoo%2C+Jae-Hyung&rft.date=2020-11-02&rft.pub=IFIP&rft.eissn=2165-963X&rft.spage=1&rft.epage=5&rft_id=info:doi/10.23919%2FCNSM50824.2020.9269046&rft.externalDocID=9269046