Error Mitigation for Deep Quantum Optimization Circuits by Leveraging Problem Symmetries

High error rates and limited fidelity of quantum gates in near-term quantum devices are the central obstacles to successful execution of the Quantum Approximate Optimization Algorithm (QAOA). In this paper we introduce an application-specific approach for mitigating the errors in QAOA evolution by l...

Full description

Saved in:
Bibliographic Details
Published in2021 IEEE International Conference on Quantum Computing and Engineering (QCE) pp. 291 - 300
Main Authors Shaydulin, Ruslan, Galda, Alexey
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2021
Subjects
Online AccessGet full text
DOI10.1109/QCE52317.2021.00046

Cover

Abstract High error rates and limited fidelity of quantum gates in near-term quantum devices are the central obstacles to successful execution of the Quantum Approximate Optimization Algorithm (QAOA). In this paper we introduce an application-specific approach for mitigating the errors in QAOA evolution by leveraging the symmetries present in the classical objective function to be optimized. Specifically, the QAOA state is projected into the symmetry-restricted subspace, with projection being performed either at the end of the circuit or throughout the evolution. Our approach improves the fidelity of the QAOA state, thereby increasing both the accuracy of the sample estimate of the QAOA objective and the probability of sampling the binary string corresponding to that objective value. We demonstrate the efficacy of the proposed methods on QAOA applied to the MaxCut problem, although our methods are general and apply to any objective function with symmetries, as well as to the generalization of QAOA with alternative mixers. We experimentally verify the proposed methods on an IBM Quantum processor, utilizing up to 5 qubits. When leveraging a global bit-flip symmetry, our approach leads to a 23% average improvement in quantum state fidelity.
AbstractList High error rates and limited fidelity of quantum gates in near-term quantum devices are the central obstacles to successful execution of the Quantum Approximate Optimization Algorithm (QAOA). In this paper we introduce an application-specific approach for mitigating the errors in QAOA evolution by leveraging the symmetries present in the classical objective function to be optimized. Specifically, the QAOA state is projected into the symmetry-restricted subspace, with projection being performed either at the end of the circuit or throughout the evolution. Our approach improves the fidelity of the QAOA state, thereby increasing both the accuracy of the sample estimate of the QAOA objective and the probability of sampling the binary string corresponding to that objective value. We demonstrate the efficacy of the proposed methods on QAOA applied to the MaxCut problem, although our methods are general and apply to any objective function with symmetries, as well as to the generalization of QAOA with alternative mixers. We experimentally verify the proposed methods on an IBM Quantum processor, utilizing up to 5 qubits. When leveraging a global bit-flip symmetry, our approach leads to a 23% average improvement in quantum state fidelity.
Author Shaydulin, Ruslan
Galda, Alexey
Author_xml – sequence: 1
  givenname: Ruslan
  surname: Shaydulin
  fullname: Shaydulin, Ruslan
  email: rshaydulin@anl.gov
  organization: Argonne National Laboratory,Mathematics and Computer Science Division,Lemont,IL,USA,60439
– sequence: 2
  givenname: Alexey
  surname: Galda
  fullname: Galda, Alexey
  email: alexey.galda@menten.ai
  organization: Menten AI, Inc.,Palo Alto,CA,USA,94303
BookMark eNotjc1KxDAURiPoQsd5gtnkBVpzmza3XUoddaAyDiq4G5LmtgSmP6SpUJ_egXH1cThwvjt23Q89MbYBEQOI4uFQbrNEAsaJSCAWQqTqiq0LzEGpLAVVAN6y7633g-dvLrhWBzf0vDnjE9HID7Puw9zx_Rhc534vtnS-nl2YuFl4RT_kdev6lr_7wZyo4x9L11HwjqZ7dtPo00Tr_12xr-ftZ_kaVfuXXflYRS4RMkSWUNYEEsEIBFQ2RWNVbWUDtqAcRF6nDQpA2ySkc2sUZmhAZ8oaLQ3KFdtcuo6IjqN3nfbLsVAik-eDP92IUK0
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/QCE52317.2021.00046
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665416917
1665416912
EndPage 300
ExternalDocumentID 9605320
Genre orig-research
GrantInformation_xml – fundername: U.S. Department of Energy
  funderid: 10.13039/100000015
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-de73ce1371b07176d47bd6cd3f1d9e8108c4f7017df2ea8db6757b1a56dba3b73
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:56 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-de73ce1371b07176d47bd6cd3f1d9e8108c4f7017df2ea8db6757b1a56dba3b73
PageCount 10
ParticipantIDs ieee_primary_9605320
PublicationCentury 2000
PublicationDate 2021-Oct.
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.
PublicationDecade 2020
PublicationTitle 2021 IEEE International Conference on Quantum Computing and Engineering (QCE)
PublicationTitleAbbrev QCE
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9731251
Snippet High error rates and limited fidelity of quantum gates in near-term quantum devices are the central obstacles to successful execution of the Quantum...
SourceID ieee
SourceType Publisher
StartPage 291
SubjectTerms Approximation algorithms
Conferences
Error analysis
error mitigation
Linear programming
Logic gates
Quantum Approximate Optimization Algorithm
quantum computing
quantum optimization
Quantum state
Qubit
Title Error Mitigation for Deep Quantum Optimization Circuits by Leveraging Problem Symmetries
URI https://ieeexplore.ieee.org/document/9605320
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJyZALeJbHhhJG8dO7MylVYUoUEGlbpU_LlKEklZpMpRfj52EIhADW-Qhsc6O715y7z2EbkMZKibCxIuFzz1mawAvpjLwTGS0L-JQKua4w7OnaLpgD8tw2UF3ey4MANTNZzBwl_W_fLPWlftUNrTVtvMxOEAHXEQNV6sVEiJ-PJyPxhZVEW5BX0BqFc7oh2VKnTEmR2j29aymUeR9UJVqoD9-yTD-dzLHqP_NzcMv-6xzgjqQ99ByXBTrAs_SRjFjnWNbi-J7gA2eVzZ2VYaf7dmQtaRLPEoLXaXlFqsdfgS7m2uvIndf5y6DX3dZVjttbftoMRm_jaZe65ngpYFPS88ApxoI5UQ5pBYZxpWJtKEJMTEI4gvNEm5fQ5MEIIVRFjBwRWQYGSWp4vQUdfN1DmcIMxH79vCTofSB8YTLhDrxQaEsQqHc6HPUc1FZbRpZjFUbkIu_hy_RoVuXpg_uCnXLooJrm89LdVMv5CfiEqNC
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwGG3mPOhJzWb8bQ8eZQPa0nKeW6aO6eKW7La0tCTEAAuDw_zrbQFnNB68kR6g-Vr6fQ--9x4Ad4QTgRmJLJ_Z1MK6BrB8xF1LejK0mU-4wIY7HEy98QI_LcmyBe53XBilVNV8pnrmsvqXL7OwNJ_K-rraNj4Ge2CfYIxJzdZqpIQc2-_PBkONqxyqYZ_rVDqc3g_TlCpnjI5A8PW0ulXkvVcWohd-_BJi_O90jkH3m50HX3d55wS0VNoBy2GeZzkM4lozI0uhrkbhg1JrOCt19MoEvujTIWlol3AQ52EZFxsotnCi9H6u3IrMfY2_DHzbJknltbXpgsVoOB-MrcY1wYpdGxWWVBSFykHUEQareRJTIb1QosiRvmKOzUIcUf0iyshVnEmhIQMVDieeFBwJik5BO81SdQYgZr6tjz9OuK0wjSiPkJEfZEJjFERleA46JiqrdS2MsWoCcvH38C04GM-DyWryOH2-BIdmjequuCvQLvJSXevsXoibalE_AZulpo8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+International+Conference+on+Quantum+Computing+and+Engineering+%28QCE%29&rft.atitle=Error+Mitigation+for+Deep+Quantum+Optimization+Circuits+by+Leveraging+Problem+Symmetries&rft.au=Shaydulin%2C+Ruslan&rft.au=Galda%2C+Alexey&rft.date=2021-10-01&rft.pub=IEEE&rft.spage=291&rft.epage=300&rft_id=info:doi/10.1109%2FQCE52317.2021.00046&rft.externalDocID=9605320