Optimized BP neural network algorithm for predicting ship trajectory

Ship navigation trajectory prediction is very important for ship transportation service. Therefore, a BP neural network based on ship's AIS data is proposed to predict ship trajectory. Aiming at the random characteristics of BP neural network initial weight threshold and the characteristics of...

Full description

Saved in:
Bibliographic Details
Published in2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) Vol. 1; pp. 525 - 532
Main Authors Ma, Shexiang, Liu, Shanshan, Meng, Xin
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2020
Subjects
Online AccessGet full text
DOI10.1109/ITNEC48623.2020.9085154

Cover

Abstract Ship navigation trajectory prediction is very important for ship transportation service. Therefore, a BP neural network based on ship's AIS data is proposed to predict ship trajectory. Aiming at the random characteristics of BP neural network initial weight threshold and the characteristics of easy to fall into local minimum, GA (Genetic Algorithm), PSO (Partical Swarm Optimization), ACO (Ant Colony Optimization), DE (Differential Evolution) and GA-PSO are used respectively to optimize the BP neural network. The experimental results show that the five optimized BP neural networks can not only fully extract the nonlinear features of the data, but also have higher prediction accuracy than the traditional prediction methods, and the prediction accuracy of the GA-PSO-BP model. The highest, the mean square error (MSE) of the overall navigation trajectory, navigation longitude and navigation latitude are 7.6638^{\ast}10-6, 4.7618^{\ast}10-6 and 1.0566^{\ast}10-5 respectively.
AbstractList Ship navigation trajectory prediction is very important for ship transportation service. Therefore, a BP neural network based on ship's AIS data is proposed to predict ship trajectory. Aiming at the random characteristics of BP neural network initial weight threshold and the characteristics of easy to fall into local minimum, GA (Genetic Algorithm), PSO (Partical Swarm Optimization), ACO (Ant Colony Optimization), DE (Differential Evolution) and GA-PSO are used respectively to optimize the BP neural network. The experimental results show that the five optimized BP neural networks can not only fully extract the nonlinear features of the data, but also have higher prediction accuracy than the traditional prediction methods, and the prediction accuracy of the GA-PSO-BP model. The highest, the mean square error (MSE) of the overall navigation trajectory, navigation longitude and navigation latitude are 7.6638^{\ast}10-6, 4.7618^{\ast}10-6 and 1.0566^{\ast}10-5 respectively.
Author Meng, Xin
Liu, Shanshan
Ma, Shexiang
Author_xml – sequence: 1
  givenname: Shexiang
  surname: Ma
  fullname: Ma, Shexiang
  organization: School of Electrical and Electronic Engineering, Tianjin University of Technology
– sequence: 2
  givenname: Shanshan
  surname: Liu
  fullname: Liu, Shanshan
  organization: School of Electrical and Electronic Engineering, Tianjin University of Technology
– sequence: 3
  givenname: Xin
  surname: Meng
  fullname: Meng, Xin
  organization: School of TUT Maritime, Tianjin University of Technology
BookMark eNotz7tOwzAUgGEjwQClT8CAXyDh-B6PEApUqihDmavYPmkNuck1QuXpQaLTt_3Sf0XOh3FAQm4ZlIyBvVtuXhe1rDQXJQcOpYVKMSXPyNyaihleMSksiEvyuJ5y7OMPBvrwRgf8Sk33R_4e0ydtut2YYt73tB0TnRKG6HMcdvSwjxPNqflAn8d0vCYXbdMdcH5yRt6fFpv6pVitn5f1_aqIHEQugpJg0LDKCO9tAIVCKOMY1z4Y5izKILUTvlUeG-GMtuCAa6Mdb4GjEjNy89-NiLidUuybdNye3sQv1QZJug
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ITNEC48623.2020.9085154
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728143903
172814390X
1728143896
9781728143897
EndPage 532
ExternalDocumentID 9085154
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-d5407e71873cc9d05e3357b126cd71b9e4d46b3cf5cea3b7690b02676b2f02e53
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:00 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-d5407e71873cc9d05e3357b126cd71b9e4d46b3cf5cea3b7690b02676b2f02e53
PageCount 8
ParticipantIDs ieee_primary_9085154
PublicationCentury 2000
PublicationDate 2020-June
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-June
PublicationDecade 2020
PublicationTitle 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)
PublicationTitleAbbrev ITNEC
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8218759
Snippet Ship navigation trajectory prediction is very important for ship transportation service. Therefore, a BP neural network based on ship's AIS data is proposed to...
SourceID ieee
SourceType Publisher
StartPage 525
SubjectTerms AIS
Biological system modeling
BP neural network
Genetic algorithm
Genetics
Navigation
Neural networks
Particle swarm optimizationt
Prediction algorithms
Predictive models
Ship track prediction
Trajectory
Title Optimized BP neural network algorithm for predicting ship trajectory
URI https://ieeexplore.ieee.org/document/9085154
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT8IwFMcb4ORJDRh_pwePbnTrum5XEYImIgdIuJG-7k1RfmUZB_nrbcvEaDx46tIsWbtl-b62n_d9hNxIaUWXoxcnQnlGoZSXsizxGCpMASBOwNEWg7g_jh4nYlIjt_tcGER08Bn69tKd5WcrvbFbZe3UxgciqpO6TOJdrlaFbAUsbT-MBt1OZCJ0bpZ9IfOru3-UTXGq0TskT1_P28Ei7_6mBF9vf1kx_ndAR6T1nZ9Hh3vlOSY1XDbJ_bP5-xezLWb0bkitT6Wam8ZR3lTNX1bFrHxdUBOk0nVhj2cs8EwtrEXLQr253fuPFhn3uqNO36tqJHizkPHSy6yBHhqBkVzrNGMCORcSgjDWmQwgxSiLYuA6FxoVB2kWw2CLTsUQ5ixEwU9IY7la4imhAWCohcyNfukIEgQWScytvQ7HBFR0Rpr2DUzXOxuMaTX587-7L8hBaNEaBzhfkkZZbPDK6HcJ1-7DfQIvf5y7
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAC1CLeeGAkqRPbcbJSWrXQlg6t1K2ynQsU-lKUDvTXYycBBGJgsmVZ8uNkfWf7u-8QuhHCgi4FJwi5dAxCSScicegQkBAppYJQ5WyLQdAZs4cJn1TQ7VcsDADk5DNwbTX_y49XemOfyhqR9Q8420G7nDHGi2itkrTlkajRHQ1aTWZ8dGoufj5xy_4_EqfkuNE-QP3PEQu6yJu7yZSrt7_EGP87pUNU_47Qw8Mv7DlCFVjW0P2TOf-L2RZifDfEVqlSzk2R87yxnD-v0ln2ssDGTcXr1H7QWMoztnQtnKXyNX-_f6-jcbs1anacMkuCM_MJzZzYSuiBgRhBtY5iwoFSLpTnBzoWnoqAxSxQVCdcg6RKmOuwsmmnAuUnxAdOj1F1uVrCCcKeAl9zkRgE00yFoAgTkFiBHQqhkuwU1ewOTNeFEMa0XPzZ383XaK8z6vemve7g8RztW4sUHKsLVM3SDVwaNM_UVW7ED5PzoAM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+IEEE+4th+Information+Technology%2C+Networking%2C+Electronic+and+Automation+Control+Conference+%28ITNEC%29&rft.atitle=Optimized+BP+neural+network+algorithm+for+predicting+ship+trajectory&rft.au=Ma%2C+Shexiang&rft.au=Liu%2C+Shanshan&rft.au=Meng%2C+Xin&rft.date=2020-06-01&rft.pub=IEEE&rft.volume=1&rft.spage=525&rft.epage=532&rft_id=info:doi/10.1109%2FITNEC48623.2020.9085154&rft.externalDocID=9085154