A Stem-Based Dissection of Inferior Fronto-Occipital Fasciculus with A Deep Learning Model

The aim of this work is to improve the virtual dissection of the Inferior Frontal Occipital Fasciculus (IFOF) by combining a recent insight on white matter anatomy from ex-vivo dissection and a data driven approach with a deep learning model. Current methods of tract dissection are not robust with r...

Full description

Saved in:
Bibliographic Details
Published inProceedings (International Symposium on Biomedical Imaging) pp. 267 - 270
Main Authors Astolfi, Pietro, De Benedictis, Alessandro, Sarubbo, Silvio, Berto, Giulia, Olivetti, Emanuele, Sona, Diego, Avesani, Paolo
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2020
Subjects
Online AccessGet full text
ISSN1945-8452
DOI10.1109/ISBI45749.2020.9098483

Cover

Abstract The aim of this work is to improve the virtual dissection of the Inferior Frontal Occipital Fasciculus (IFOF) by combining a recent insight on white matter anatomy from ex-vivo dissection and a data driven approach with a deep learning model. Current methods of tract dissection are not robust with respect to false positives and are neglecting the neuroanatomical waypoints of a given tract, like the stem. In this work we design a deep learning model to segment the stem of IFOF and we show how the dissection of the tract can be improved. The proposed method is validated on the Human Connectome Project dataset, where expert neuroanatomists segmented the IFOF on multiple subjects. In addition we compare the results to the most recent method in the literature for automatic tract dissection.
AbstractList The aim of this work is to improve the virtual dissection of the Inferior Frontal Occipital Fasciculus (IFOF) by combining a recent insight on white matter anatomy from ex-vivo dissection and a data driven approach with a deep learning model. Current methods of tract dissection are not robust with respect to false positives and are neglecting the neuroanatomical waypoints of a given tract, like the stem. In this work we design a deep learning model to segment the stem of IFOF and we show how the dissection of the tract can be improved. The proposed method is validated on the Human Connectome Project dataset, where expert neuroanatomists segmented the IFOF on multiple subjects. In addition we compare the results to the most recent method in the literature for automatic tract dissection.
Author Olivetti, Emanuele
Sona, Diego
Berto, Giulia
Avesani, Paolo
Astolfi, Pietro
Sarubbo, Silvio
De Benedictis, Alessandro
Author_xml – sequence: 1
  givenname: Pietro
  surname: Astolfi
  fullname: Astolfi, Pietro
  organization: PAVIS, Istituto Italiano di Tecnologia,Genova,Italy
– sequence: 2
  givenname: Alessandro
  surname: De Benedictis
  fullname: De Benedictis, Alessandro
  organization: Neurosurgery Unit, Bambino Gesù Childrens Hospital,Roma,Italy
– sequence: 3
  givenname: Silvio
  surname: Sarubbo
  fullname: Sarubbo, Silvio
  organization: S. Chiara Hospital APSS,Division of Neurosurgery,Trento,Italy
– sequence: 4
  givenname: Giulia
  surname: Berto
  fullname: Berto, Giulia
  organization: Center for Mind and Brain Sciences (CIMeC), University of Trento,Italy
– sequence: 5
  givenname: Emanuele
  surname: Olivetti
  fullname: Olivetti, Emanuele
  organization: Center for Mind and Brain Sciences (CIMeC), University of Trento,Italy
– sequence: 6
  givenname: Diego
  surname: Sona
  fullname: Sona, Diego
  organization: PAVIS, Istituto Italiano di Tecnologia,Genova,Italy
– sequence: 7
  givenname: Paolo
  surname: Avesani
  fullname: Avesani, Paolo
  organization: Center for Mind and Brain Sciences (CIMeC), University of Trento,Italy
BookMark eNotkMtKAzEYRqMoaGufQJC8wNRc_sxMlr1YHah0Ud24KZnkj0amSZlMEd_egv02Z3fgfCNyFVNEQh44m3LO9GOznTegKtBTwQSbaqZrqOUFGXEl61JLydQlueUaVFGDEjdkkvM3O60CkAxuyceMbgfcF3OT0dFlyBntEFKkydMmeuxD6umqT3FIxcbacAiD6ejKZBvssTtm-hOGLzqjS8QDXaPpY4if9DU57O7ItTddxsmZY_K-enpbvBTrzXOzmK2LIJgcirY1tgJrnRZGMu2clE5zX6lWCKO8t9ZLBFW2rfNGtEYAExWUvHTAT30ox-T-3xsQcXfow970v7vzFfIP3oFVgQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISBI45749.2020.9098483
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1538693305
9781538693308
EISSN 1945-8452
EndPage 270
ExternalDocumentID 9098483
Genre orig-research
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i203t-bbac74ccd92a309dd33d91f75b22a5ffccf3e456bbdfa2ba240274616d41330e3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:42:25 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-bbac74ccd92a309dd33d91f75b22a5ffccf3e456bbdfa2ba240274616d41330e3
PageCount 4
ParticipantIDs ieee_primary_9098483
PublicationCentury 2000
PublicationDate 2020-April
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-April
PublicationDecade 2020
PublicationTitle Proceedings (International Symposium on Biomedical Imaging)
PublicationTitleAbbrev ISBI
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
Score 2.1031768
Snippet The aim of this work is to improve the virtual dissection of the Inferior Frontal Occipital Fasciculus (IFOF) by combining a recent insight on white matter...
SourceID ieee
SourceType Publisher
StartPage 267
SubjectTerms bundle segmentation
deep learning
diffusion MRI
IFOF
stem
Title A Stem-Based Dissection of Inferior Fronto-Occipital Fasciculus with A Deep Learning Model
URI https://ieeexplore.ieee.org/document/9098483
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTrDwaBFveWDEaRI7dTy2lKhFKiCVShVL5ccFVUBTlXTh12MnoTzEwGZFshP5pPsud_d9h9CFZMA4lYpQpTRhoeREiVQSwUMfLB4pwRwbeXTbGUzYzTSa1tDlhgsDAEXzGXhuWdTyTabXLlXWFr6IWUzrqM7jTsnV2uRTLBQy-2tekYADX7SH496QRZw5Okroe9XmH1NUChBJdtDo8_Vl78izt86Vp99_KTP-9_t2UeuLrofvN0C0h2qw2Efb35QGm-ixi8c5vJKeBS2D-64IXxAacJbioTtknq1wUogZkDut58UsEZxIC5AuP_iGXb4Wd3EfYIkrTdYn7AapvbTQJLl-uBqQaqwCmYc-zYlSUnOmtRGhpL4whlIjgpRHKgxllKZapxRsXKWUSWWopKu_cNYJOsYCHvWBHqDGIlvAIcIBcBsOxNIGasZ6XKmsyzKBEsL6EQ5cHqGmu6XZslTOmFUXdPz34xO05SxV9sWcoka-WsOZhfxcnRe2_gAiGKuu
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4QD-rFBxrf9uDRLrttl9IjiIRVQBMgIV5IX2uIyhJcLv56290VH_HgrWnSpmmT-aYz830DwKWghjIiJCJSKkSxYEjyWCDOsG8sHklOHRu51691RvR2HI5L4GrFhTHGZMVnxnPDLJevE7V0obIq93md1skaWA8ppWHO1lpFVCwYUvs5L2jAgc-r0aAZ0ZBRR0jBvlcs_9FHJYOR9jbofR4grx559pap9NT7L23G_55wB-x_EfbgwwqKdkHJzPbA1jetwQp4bMBBal5R08KWhi2Xhs8oDTCJYeQ2mSYL2M7kDNC9UtOsmwhsCwuRLkL4Bl3EFjZgy5g5LFRZn6BrpfayD0btm-F1BxWNFdAU-yRFUgrFqFKaY0F8rjUhmgcxCyXGIoxjpWJirGclpY4FlsJlYBitBTVtIY_4hhyA8iyZmUMAA8OsQ1AX1lXT1uYKaY2WDiTn1pIww8QRqLhbmsxz7YxJcUHHf09fgI3OsNeddKP-3QnYdK-WV8mcgnK6WJoz6wCk8jx79w9PoK77
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=A+Stem-Based+Dissection+of+Inferior+Fronto-Occipital+Fasciculus+with+A+Deep+Learning+Model&rft.au=Astolfi%2C+Pietro&rft.au=De+Benedictis%2C+Alessandro&rft.au=Sarubbo%2C+Silvio&rft.au=Berto%2C+Giulia&rft.date=2020-04-01&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=267&rft.epage=270&rft_id=info:doi/10.1109%2FISBI45749.2020.9098483&rft.externalDocID=9098483