Linear Quadratic Tracking Control of Hidden Markov Jump Linear Systems Subject to Ambiguity

The linear quadratic tracking control problem is studied for a class of discrete-time uncertain Markov jump linear systems with time-varying conditional distributions. The controller is designed under the assumption that it has no access to the true states of the Markov chain, but rather it depends...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the IEEE Conference on Decision & Control pp. 2336 - 2341
Main Authors Tzortzis, Ioannis, Hadjicostis, Christoforos N., Charalambous, Charalambos D.
Format Conference Proceeding
LanguageEnglish
Published IEEE 14.12.2021
Subjects
Online AccessGet full text
ISSN2576-2370
DOI10.1109/CDC45484.2021.9683675

Cover

Abstract The linear quadratic tracking control problem is studied for a class of discrete-time uncertain Markov jump linear systems with time-varying conditional distributions. The controller is designed under the assumption that it has no access to the true states of the Markov chain, but rather it depends on the Markov chain state estimates. To deal with uncertainty, the transition probabilities of Markov state estimates between the different operating modes of the system are considered to belong in an ambiguity set of some nominal transition probabilities. The estimation problem is solved via the one-step forward Viterbi algorithm, while the stochastic control problem is solved via minimax optimization theory. An optimal control policy with some desired robustness properties is designed, and a maximizing time-varying transition probability distribution is obtained. A numerical example is given to illustrate the applicability and effectiveness of the proposed approach.
AbstractList The linear quadratic tracking control problem is studied for a class of discrete-time uncertain Markov jump linear systems with time-varying conditional distributions. The controller is designed under the assumption that it has no access to the true states of the Markov chain, but rather it depends on the Markov chain state estimates. To deal with uncertainty, the transition probabilities of Markov state estimates between the different operating modes of the system are considered to belong in an ambiguity set of some nominal transition probabilities. The estimation problem is solved via the one-step forward Viterbi algorithm, while the stochastic control problem is solved via minimax optimization theory. An optimal control policy with some desired robustness properties is designed, and a maximizing time-varying transition probability distribution is obtained. A numerical example is given to illustrate the applicability and effectiveness of the proposed approach.
Author Hadjicostis, Christoforos N.
Tzortzis, Ioannis
Charalambous, Charalambos D.
Author_xml – sequence: 1
  givenname: Ioannis
  surname: Tzortzis
  fullname: Tzortzis, Ioannis
  email: tzortzis.ioannis@ucy.ac.cy
  organization: University of Cyprus,Department of Electrical and Computer Engineering,Nicosia,Cyprus
– sequence: 2
  givenname: Christoforos N.
  surname: Hadjicostis
  fullname: Hadjicostis, Christoforos N.
  email: chadjic@ucy.ac.cy
  organization: University of Cyprus,Department of Electrical and Computer Engineering,Nicosia,Cyprus
– sequence: 3
  givenname: Charalambos D.
  surname: Charalambous
  fullname: Charalambous, Charalambos D.
  email: chadcha@ucy.ac.cy
  organization: University of Cyprus,Department of Electrical and Computer Engineering,Nicosia,Cyprus
BookMark eNotkLtOwzAAAA0Cibb0CxCSfyDB78dYBUpBQQi1TAyVEzuV2yauHAcpf89AppvuhpuDmy50DoBHjHKMkX4qngvGmWI5QQTnWigqJL8CSy0VFoIzKrjm12BGuBQZoRLdgXnfHxGiWjM6Az-l75yJ8GswNprka7iLpj757gCL0KUYzjA0cOOtdR38MPEUfuH70F7g5G3HPrm2h9uhOro6wRTgqq38YfBpvAe3jTn3bjlxAb7XL7tik5Wfr2_Fqsw8QTRlVUWd01oKYpHiDmtDiGVSCSGsqq20gulaVYJQZhgzSDakUZLjiipjiTJ0AR7-u945t79E35o47qcX9A8VOVVA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CDC45484.2021.9683675
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665436595
166543659X
EISSN 2576-2370
EndPage 2341
ExternalDocumentID 9683675
Genre orig-research
GrantInformation_xml – fundername: European Regional Development Fund
  funderid: 10.13039/501100008530
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-bb3ee99762d085e19a22d478666d8cd7d649c8b6234a44a07f2f8751b38ad28a3
IEDL.DBID RIE
IngestDate Wed Aug 27 03:00:23 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-bb3ee99762d085e19a22d478666d8cd7d649c8b6234a44a07f2f8751b38ad28a3
PageCount 6
ParticipantIDs ieee_primary_9683675
PublicationCentury 2000
PublicationDate 2021-Dec.-14
PublicationDateYYYYMMDD 2021-12-14
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-14
  day: 14
PublicationDecade 2020
PublicationTitle Proceedings of the IEEE Conference on Decision & Control
PublicationTitleAbbrev CDC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039943
Score 1.7820613
Snippet The linear quadratic tracking control problem is studied for a class of discrete-time uncertain Markov jump linear systems with time-varying conditional...
SourceID ieee
SourceType Publisher
StartPage 2336
SubjectTerms Linear systems
Markov processes
Optimal control
Robust control
Robustness
Uncertainty
Viterbi algorithm
Title Linear Quadratic Tracking Control of Hidden Markov Jump Linear Systems Subject to Ambiguity
URI https://ieeexplore.ieee.org/document/9683675
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7anvTioxXf7MGjSTeb7WZzlGgphYqChYKHsk8pYiKSePDXO5uk9YEHb2FhyTKz2e_byXwzCF1I4awgzgUW8C5gzqTwSRkdJFJqrgAPifAC59ktn8zZdDFadNDlRgtjra2Tz2zoH-t_-abQlQ-VDVMuYiC4XdRNBG-0WutTF3CWxa1CJyLpMLvOGJBxHzWhUdhO_NFBpQaQ8Q6arV_d5I08h1WpQv3xqyrjf9e2iwZfUj18twGhPdSx-T7a_lZlsI8e4b4J-xnfV9J4f2sMAKV9iBxnTaI6Lhye-FoiOfbaneIdT8HLuJ3XFjXHcMb4oA0uC3z1olZPFRD4AZqPbx6ySdD2VAhWlMRloFRsbQochBogWzZKJaWGgTk5932MEsNZqoUCUsQkY5Ikjjq40kQqFtJQIeMD1MuL3B4iDMyGW6q0NCOgNQD9iibUOEVGxDGi4iPU92ZavjZlM5athY7_Hj5BW95VPlMkYqeoV75V9gzwvlTntaM_AYHfq2g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qPagXH634dg8eTZpsNq-jREusbVFooeCh7FOKmIgkHvz1ziZpfeDBW1hYsuxs9vtmMt8MQhcs0ipytLYU4J1FtYzhk5LCChkTAQc8dCIjcB6Ng3RKBzN_1kKXKy2MUqpKPlO2eaz-5ctclCZU1ouDyAOCu4bWfUqpX6u1lvcuIC31Go2O68S95DqhQMdN3IS4djP1Rw-VCkL622i0fHmdOfJslwW3xcevuoz_Xd0O6n6J9fD9CoZ2UUtle2jrW53BDnoEjxNONH4omTQWFxggSpggOU7qVHWca5yaaiIZNuqd_B0PwM64mdeUNcdwy5iwDS5yfPXCF08lUPgumvZvJklqNV0VrAVxvMLi3FMqBhZCJNAt5caMEEnDCPwY08kolAGNRcSBFlFGKXNCTTQ4NS73IiZJxLx91M7yTB0gDNwmUIQLJn0gNgD-nIREau74jqYO9w5Rx2zT_LUunDFvdujo7-FztJFORsP58HZ8d4w2jdlM3ohLT1C7eCvVKaB_wc8qo38Cq26utQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+IEEE+Conference+on+Decision+%26+Control&rft.atitle=Linear+Quadratic+Tracking+Control+of+Hidden+Markov+Jump+Linear+Systems+Subject+to+Ambiguity&rft.au=Tzortzis%2C+Ioannis&rft.au=Hadjicostis%2C+Christoforos+N.&rft.au=Charalambous%2C+Charalambos+D.&rft.date=2021-12-14&rft.pub=IEEE&rft.eissn=2576-2370&rft.spage=2336&rft.epage=2341&rft_id=info:doi/10.1109%2FCDC45484.2021.9683675&rft.externalDocID=9683675