Linear Quadratic Tracking Control of Hidden Markov Jump Linear Systems Subject to Ambiguity
The linear quadratic tracking control problem is studied for a class of discrete-time uncertain Markov jump linear systems with time-varying conditional distributions. The controller is designed under the assumption that it has no access to the true states of the Markov chain, but rather it depends...
Saved in:
| Published in | Proceedings of the IEEE Conference on Decision & Control pp. 2336 - 2341 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
14.12.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2576-2370 |
| DOI | 10.1109/CDC45484.2021.9683675 |
Cover
| Abstract | The linear quadratic tracking control problem is studied for a class of discrete-time uncertain Markov jump linear systems with time-varying conditional distributions. The controller is designed under the assumption that it has no access to the true states of the Markov chain, but rather it depends on the Markov chain state estimates. To deal with uncertainty, the transition probabilities of Markov state estimates between the different operating modes of the system are considered to belong in an ambiguity set of some nominal transition probabilities. The estimation problem is solved via the one-step forward Viterbi algorithm, while the stochastic control problem is solved via minimax optimization theory. An optimal control policy with some desired robustness properties is designed, and a maximizing time-varying transition probability distribution is obtained. A numerical example is given to illustrate the applicability and effectiveness of the proposed approach. |
|---|---|
| AbstractList | The linear quadratic tracking control problem is studied for a class of discrete-time uncertain Markov jump linear systems with time-varying conditional distributions. The controller is designed under the assumption that it has no access to the true states of the Markov chain, but rather it depends on the Markov chain state estimates. To deal with uncertainty, the transition probabilities of Markov state estimates between the different operating modes of the system are considered to belong in an ambiguity set of some nominal transition probabilities. The estimation problem is solved via the one-step forward Viterbi algorithm, while the stochastic control problem is solved via minimax optimization theory. An optimal control policy with some desired robustness properties is designed, and a maximizing time-varying transition probability distribution is obtained. A numerical example is given to illustrate the applicability and effectiveness of the proposed approach. |
| Author | Hadjicostis, Christoforos N. Tzortzis, Ioannis Charalambous, Charalambos D. |
| Author_xml | – sequence: 1 givenname: Ioannis surname: Tzortzis fullname: Tzortzis, Ioannis email: tzortzis.ioannis@ucy.ac.cy organization: University of Cyprus,Department of Electrical and Computer Engineering,Nicosia,Cyprus – sequence: 2 givenname: Christoforos N. surname: Hadjicostis fullname: Hadjicostis, Christoforos N. email: chadjic@ucy.ac.cy organization: University of Cyprus,Department of Electrical and Computer Engineering,Nicosia,Cyprus – sequence: 3 givenname: Charalambos D. surname: Charalambous fullname: Charalambous, Charalambos D. email: chadcha@ucy.ac.cy organization: University of Cyprus,Department of Electrical and Computer Engineering,Nicosia,Cyprus |
| BookMark | eNotkLtOwzAAAA0Cibb0CxCSfyDB78dYBUpBQQi1TAyVEzuV2yauHAcpf89AppvuhpuDmy50DoBHjHKMkX4qngvGmWI5QQTnWigqJL8CSy0VFoIzKrjm12BGuBQZoRLdgXnfHxGiWjM6Az-l75yJ8GswNprka7iLpj757gCL0KUYzjA0cOOtdR38MPEUfuH70F7g5G3HPrm2h9uhOro6wRTgqq38YfBpvAe3jTn3bjlxAb7XL7tik5Wfr2_Fqsw8QTRlVUWd01oKYpHiDmtDiGVSCSGsqq20gulaVYJQZhgzSDakUZLjiipjiTJ0AR7-u945t79E35o47qcX9A8VOVVA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CDC45484.2021.9683675 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781665436595 166543659X |
| EISSN | 2576-2370 |
| EndPage | 2341 |
| ExternalDocumentID | 9683675 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: European Regional Development Fund funderid: 10.13039/501100008530 |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP M43 OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i203t-bb3ee99762d085e19a22d478666d8cd7d649c8b6234a44a07f2f8751b38ad28a3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 03:00:23 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-bb3ee99762d085e19a22d478666d8cd7d649c8b6234a44a07f2f8751b38ad28a3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9683675 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Dec.-14 |
| PublicationDateYYYYMMDD | 2021-12-14 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-Dec.-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the IEEE Conference on Decision & Control |
| PublicationTitleAbbrev | CDC |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0039943 |
| Score | 1.7820613 |
| Snippet | The linear quadratic tracking control problem is studied for a class of discrete-time uncertain Markov jump linear systems with time-varying conditional... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2336 |
| SubjectTerms | Linear systems Markov processes Optimal control Robust control Robustness Uncertainty Viterbi algorithm |
| Title | Linear Quadratic Tracking Control of Hidden Markov Jump Linear Systems Subject to Ambiguity |
| URI | https://ieeexplore.ieee.org/document/9683675 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7anvTioxXf7MGjSTeb7WZzlGgphYqChYKHsk8pYiKSePDXO5uk9YEHb2FhyTKz2e_byXwzCF1I4awgzgUW8C5gzqTwSRkdJFJqrgAPifAC59ktn8zZdDFadNDlRgtjra2Tz2zoH-t_-abQlQ-VDVMuYiC4XdRNBG-0WutTF3CWxa1CJyLpMLvOGJBxHzWhUdhO_NFBpQaQ8Q6arV_d5I08h1WpQv3xqyrjf9e2iwZfUj18twGhPdSx-T7a_lZlsI8e4b4J-xnfV9J4f2sMAKV9iBxnTaI6Lhye-FoiOfbaneIdT8HLuJ3XFjXHcMb4oA0uC3z1olZPFRD4AZqPbx6ySdD2VAhWlMRloFRsbQochBogWzZKJaWGgTk5932MEsNZqoUCUsQkY5Ikjjq40kQqFtJQIeMD1MuL3B4iDMyGW6q0NCOgNQD9iibUOEVGxDGi4iPU92ZavjZlM5athY7_Hj5BW95VPlMkYqeoV75V9gzwvlTntaM_AYHfq2g |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qPagXH634dg8eTZpsNq-jREusbVFooeCh7FOKmIgkHvz1ziZpfeDBW1hYsuxs9vtmMt8MQhcs0ipytLYU4J1FtYzhk5LCChkTAQc8dCIjcB6Ng3RKBzN_1kKXKy2MUqpKPlO2eaz-5ctclCZU1ouDyAOCu4bWfUqpX6u1lvcuIC31Go2O68S95DqhQMdN3IS4djP1Rw-VCkL622i0fHmdOfJslwW3xcevuoz_Xd0O6n6J9fD9CoZ2UUtle2jrW53BDnoEjxNONH4omTQWFxggSpggOU7qVHWca5yaaiIZNuqd_B0PwM64mdeUNcdwy5iwDS5yfPXCF08lUPgumvZvJklqNV0VrAVxvMLi3FMqBhZCJNAt5caMEEnDCPwY08kolAGNRcSBFlFGKXNCTTQ4NS73IiZJxLx91M7yTB0gDNwmUIQLJn0gNgD-nIREau74jqYO9w5Rx2zT_LUunDFvdujo7-FztJFORsP58HZ8d4w2jdlM3ohLT1C7eCvVKaB_wc8qo38Cq26utQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+IEEE+Conference+on+Decision+%26+Control&rft.atitle=Linear+Quadratic+Tracking+Control+of+Hidden+Markov+Jump+Linear+Systems+Subject+to+Ambiguity&rft.au=Tzortzis%2C+Ioannis&rft.au=Hadjicostis%2C+Christoforos+N.&rft.au=Charalambous%2C+Charalambos+D.&rft.date=2021-12-14&rft.pub=IEEE&rft.eissn=2576-2370&rft.spage=2336&rft.epage=2341&rft_id=info:doi/10.1109%2FCDC45484.2021.9683675&rft.externalDocID=9683675 |