A tight (non-combinatorial) conditional lower bound for Klee's Measure Problem in 3D

We revisit the classic geometric problem of computing the volume of the union of n 3-dimensional axis-parallel boxes (Klee's measure problem in 3 D). It is well known that the problem can be solved in time O\left(n^{3 / 2}\right) (Overmars, Yap SICOMP'91; Chan FOCS'13). Can we justify...

Full description

Saved in:
Bibliographic Details
Published inProceedings / annual Symposium on Foundations of Computer Science pp. 555 - 566
Main Author Kunnemann, Marvin
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2022
Subjects
Online AccessGet full text
ISSN2575-8454
DOI10.1109/FOCS54457.2022.00059

Cover

Abstract We revisit the classic geometric problem of computing the volume of the union of n 3-dimensional axis-parallel boxes (Klee's measure problem in 3 D). It is well known that the problem can be solved in time O\left(n^{3 / 2}\right) (Overmars, Yap SICOMP'91; Chan FOCS'13). Can we justify this 30-year old barrier of n^{3 / 2 \pm o(1)} under plausible fine-grained complexity assumptions? The only previous conditional lower bound (Chan Comp. Geom.'10) shows that this barrier holds for purely combinatorial algorithms, i.e., algorithms avoiding algebraic techniques for fast matrix multiplication. This leaves open an algorithmic improvement exploiting algebraic techniques, and does not give any superlinear bound if the matrix multiplication exponent \omega turns out to be equal to 2. We resolve this issue by giving a tight conditional lower bound for general algorithms, based on the 3-uniform hyperclique hypothesis. Specifically, we prove that an O\left(n^{3 / 2-\epsilon}\right) algorithm for Klee's measure problem in 3D would give a O\left(n^{k-\epsilon^{\prime}}\right)-time algorithm for counting k-cliques in 3-uniform hypergraphs - this in turn would give a novel O\left(\left(2-\epsilon^{\prime \prime}\right)^{n}\right)-algorithm for Max-3SAT. Our lower bound can be generalized to n^{\frac{d}{3-3 / d}}-o(1), which matches the upper bound up to a factor of n^{\frac{d-3}{6-6 / d}+o(1)} and separates the general problem from popular special cases: For all d \geq 3, known \tilde{O}\left(n^{\frac{d+1}{3}}\right) algorithms (Bringmann Comp. Geom.'12; Chan FOCS'13) compute the problem for arbitrary hypercubes polynomially faster than our lower bound for the general problem.
AbstractList We revisit the classic geometric problem of computing the volume of the union of n 3-dimensional axis-parallel boxes (Klee's measure problem in 3 D). It is well known that the problem can be solved in time O\left(n^{3 / 2}\right) (Overmars, Yap SICOMP'91; Chan FOCS'13). Can we justify this 30-year old barrier of n^{3 / 2 \pm o(1)} under plausible fine-grained complexity assumptions? The only previous conditional lower bound (Chan Comp. Geom.'10) shows that this barrier holds for purely combinatorial algorithms, i.e., algorithms avoiding algebraic techniques for fast matrix multiplication. This leaves open an algorithmic improvement exploiting algebraic techniques, and does not give any superlinear bound if the matrix multiplication exponent \omega turns out to be equal to 2. We resolve this issue by giving a tight conditional lower bound for general algorithms, based on the 3-uniform hyperclique hypothesis. Specifically, we prove that an O\left(n^{3 / 2-\epsilon}\right) algorithm for Klee's measure problem in 3D would give a O\left(n^{k-\epsilon^{\prime}}\right)-time algorithm for counting k-cliques in 3-uniform hypergraphs - this in turn would give a novel O\left(\left(2-\epsilon^{\prime \prime}\right)^{n}\right)-algorithm for Max-3SAT. Our lower bound can be generalized to n^{\frac{d}{3-3 / d}}-o(1), which matches the upper bound up to a factor of n^{\frac{d-3}{6-6 / d}+o(1)} and separates the general problem from popular special cases: For all d \geq 3, known \tilde{O}\left(n^{\frac{d+1}{3}}\right) algorithms (Bringmann Comp. Geom.'12; Chan FOCS'13) compute the problem for arbitrary hypercubes polynomially faster than our lower bound for the general problem.
Author Kunnemann, Marvin
Author_xml – sequence: 1
  givenname: Marvin
  surname: Kunnemann
  fullname: Kunnemann, Marvin
  email: kuennemann@cs.uni-kl.de
  organization: TU Kaiserslautern,Kaiserslautern,Germany
BookMark eNotjk9LwzAcQKMouE0_gR5yUw-d-fdrmuOoTsXJBOd5JOmvGukSSTvEb29BT-_yeLwpOYopIiEXnM05Z-Zmua5fQSnQc8GEmDPGwByQKS9LUADcwCGZCNBQVArUCZn2_SdjigFTE7JZ0CG8fwz0aowWPu1ciHZIOdjumvoUmzCEFG1Hu_SNmbq0jw1tU6ZPHeJlT5_R9vuM9CUn1-GOhkjl7Sk5bm3X49k_Z-RtebepH4rV-v6xXqyKIJgcCie0AeE186Ypta4a7owXUregJYhGWVdq33rUxnAhLLayHL_bUVWVQKfkjJz_dQMibr9y2Nn8szXGlIaB_AX_cVDm
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/FOCS54457.2022.00059
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 1665455195
9781665455190
EISSN 2575-8454
EndPage 566
ExternalDocumentID 9996905
Genre orig-research
GroupedDBID --Z
29O
6IE
6IH
6IK
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i203t-b27952c70c9d6778d1b9c237f57352d4ab67cfce799122aef36004f677482eb43
IEDL.DBID RIE
IngestDate Wed Aug 27 02:53:24 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-b27952c70c9d6778d1b9c237f57352d4ab67cfce799122aef36004f677482eb43
PageCount 12
ParticipantIDs ieee_primary_9996905
PublicationCentury 2000
PublicationDate 2022-Oct.
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.
PublicationDecade 2020
PublicationTitle Proceedings / annual Symposium on Foundations of Computer Science
PublicationTitleAbbrev FOCS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0040504
Score 2.2532282
Snippet We revisit the classic geometric problem of computing the volume of the union of n 3-dimensional axis-parallel boxes (Klee's measure problem in 3 D). It is...
SourceID ieee
SourceType Publisher
StartPage 555
SubjectTerms (non-)combinatorial algorithms
Atmospheric measurements
Computer science
fine-grained complexity theory
geometric algorithms
hyperclique detection
Hypercubes
Particle measurements
Three-dimensional displays
Upper bound
Volume measurement
Title A tight (non-combinatorial) conditional lower bound for Klee's Measure Problem in 3D
URI https://ieeexplore.ieee.org/document/9996905
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ71Mt4m_yUFQwWxtmjbNUaZjKFPBDXYbTfICwzHFdRf_el_abop48FZKISF57fu-17zvI-RcaQwCJxRLrRFMJGnCtAPFeMwtd9yEEfg65PAxGYzF_SSe1Mj1phcGAIrDZ9Dxl8W_fPtmVr5U1vXgXHnB0i2ZJmWv1vqri7gjEFVrXBiobv-p9-J1ZiRSQF5ocno10h8GKkX-6DfIcD1yeWzktbPKdcd8_hJl_O_Udkn7u1OPPm9y0B6pwaJJGmurBlq9uU2yM9zIsy5bZHRDc0_K6SWSf4Yxh_TYk2-MxSuKBNnOygohnXsPNaq99RJFdEsf5gAXSzosC4t-ZO9GQ2cLGt22ybh_N-oNWGWvwGY8iHKmuVQxNzIwynoZORtqZXgkXSwRlVmR6UQaZ0AihOQ8AxchOBIOHxUpBy2ifVLHWcIBoRbzoMsgCxJABhTLLObSpiEkgVShSvkhafklm76XChrTarWO_r59TLb9ppVH5k5IPf9YwSmm_lyfFXv-BesWrP8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5DD-pluk38bQ6CCnZr07RpjjId061TcIPdRpO8wnBMcd3Fv96XtpsiHryVUkhIXvu-7zXv-wi5kAqDIOXSiYzmDg-j0FEpSIcFzLCUac8HW4eMB2F3xB_HwbhCbta9MACQHz6Dpr3M_-WbN720pbKWBefSCpZuBpzzoOjWWn13EXm4vGyO81zZ6jy1X6zSjEASyHJVTqtH-sNCJc8gnSqJV2MXB0dem8tMNfXnL1nG_05ulzS-e_Xo8zoL7ZEKzGukujJroOW7WyM78VqgdVEnw1uaWVpOr5D-Oxh1SJAt_cZovKZIkc20qBHSmXVRo8qaL1HEt7Q3A7hc0LgoLdqRrR8Nnc6pf9cgo879sN11SoMFZ8pcP3MUEzJgWrhaGiskZzwlNfNFGgjEZYYnKhQ61SAQRDKWQOojPOIpPsojBor7-2QDZwkHhBrMhGkCiRsCcqBAJAETJvIgdIX0ZMQOSd0u2eS90NCYlKt19Pftc7LVHcb9Sf9h0Dsm23YDiwN0J2Qj-1jCKQKBTJ3l-_8FKs2wTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%2F+annual+Symposium+on+Foundations+of+Computer+Science&rft.atitle=A+tight+%28non-combinatorial%29+conditional+lower+bound+for+Klee%27s+Measure+Problem+in+3D&rft.au=Kunnemann%2C+Marvin&rft.date=2022-10-01&rft.pub=IEEE&rft.eissn=2575-8454&rft.spage=555&rft.epage=566&rft_id=info:doi/10.1109%2FFOCS54457.2022.00059&rft.externalDocID=9996905