A tight (non-combinatorial) conditional lower bound for Klee's Measure Problem in 3D
We revisit the classic geometric problem of computing the volume of the union of n 3-dimensional axis-parallel boxes (Klee's measure problem in 3 D). It is well known that the problem can be solved in time O\left(n^{3 / 2}\right) (Overmars, Yap SICOMP'91; Chan FOCS'13). Can we justify...
        Saved in:
      
    
          | Published in | Proceedings / annual Symposium on Foundations of Computer Science pp. 555 - 566 | 
|---|---|
| Main Author | |
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.10.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2575-8454 | 
| DOI | 10.1109/FOCS54457.2022.00059 | 
Cover
| Abstract | We revisit the classic geometric problem of computing the volume of the union of n 3-dimensional axis-parallel boxes (Klee's measure problem in 3 D). It is well known that the problem can be solved in time O\left(n^{3 / 2}\right) (Overmars, Yap SICOMP'91; Chan FOCS'13). Can we justify this 30-year old barrier of n^{3 / 2 \pm o(1)} under plausible fine-grained complexity assumptions? The only previous conditional lower bound (Chan Comp. Geom.'10) shows that this barrier holds for purely combinatorial algorithms, i.e., algorithms avoiding algebraic techniques for fast matrix multiplication. This leaves open an algorithmic improvement exploiting algebraic techniques, and does not give any superlinear bound if the matrix multiplication exponent \omega turns out to be equal to 2. We resolve this issue by giving a tight conditional lower bound for general algorithms, based on the 3-uniform hyperclique hypothesis. Specifically, we prove that an O\left(n^{3 / 2-\epsilon}\right) algorithm for Klee's measure problem in 3D would give a O\left(n^{k-\epsilon^{\prime}}\right)-time algorithm for counting k-cliques in 3-uniform hypergraphs - this in turn would give a novel O\left(\left(2-\epsilon^{\prime \prime}\right)^{n}\right)-algorithm for Max-3SAT. Our lower bound can be generalized to n^{\frac{d}{3-3 / d}}-o(1), which matches the upper bound up to a factor of n^{\frac{d-3}{6-6 / d}+o(1)} and separates the general problem from popular special cases: For all d \geq 3, known \tilde{O}\left(n^{\frac{d+1}{3}}\right) algorithms (Bringmann Comp. Geom.'12; Chan FOCS'13) compute the problem for arbitrary hypercubes polynomially faster than our lower bound for the general problem. | 
    
|---|---|
| AbstractList | We revisit the classic geometric problem of computing the volume of the union of n 3-dimensional axis-parallel boxes (Klee's measure problem in 3 D). It is well known that the problem can be solved in time O\left(n^{3 / 2}\right) (Overmars, Yap SICOMP'91; Chan FOCS'13). Can we justify this 30-year old barrier of n^{3 / 2 \pm o(1)} under plausible fine-grained complexity assumptions? The only previous conditional lower bound (Chan Comp. Geom.'10) shows that this barrier holds for purely combinatorial algorithms, i.e., algorithms avoiding algebraic techniques for fast matrix multiplication. This leaves open an algorithmic improvement exploiting algebraic techniques, and does not give any superlinear bound if the matrix multiplication exponent \omega turns out to be equal to 2. We resolve this issue by giving a tight conditional lower bound for general algorithms, based on the 3-uniform hyperclique hypothesis. Specifically, we prove that an O\left(n^{3 / 2-\epsilon}\right) algorithm for Klee's measure problem in 3D would give a O\left(n^{k-\epsilon^{\prime}}\right)-time algorithm for counting k-cliques in 3-uniform hypergraphs - this in turn would give a novel O\left(\left(2-\epsilon^{\prime \prime}\right)^{n}\right)-algorithm for Max-3SAT. Our lower bound can be generalized to n^{\frac{d}{3-3 / d}}-o(1), which matches the upper bound up to a factor of n^{\frac{d-3}{6-6 / d}+o(1)} and separates the general problem from popular special cases: For all d \geq 3, known \tilde{O}\left(n^{\frac{d+1}{3}}\right) algorithms (Bringmann Comp. Geom.'12; Chan FOCS'13) compute the problem for arbitrary hypercubes polynomially faster than our lower bound for the general problem. | 
    
| Author | Kunnemann, Marvin | 
    
| Author_xml | – sequence: 1 givenname: Marvin surname: Kunnemann fullname: Kunnemann, Marvin email: kuennemann@cs.uni-kl.de organization: TU Kaiserslautern,Kaiserslautern,Germany  | 
    
| BookMark | eNotjk9LwzAcQKMouE0_gR5yUw-d-fdrmuOoTsXJBOd5JOmvGukSSTvEb29BT-_yeLwpOYopIiEXnM05Z-Zmua5fQSnQc8GEmDPGwByQKS9LUADcwCGZCNBQVArUCZn2_SdjigFTE7JZ0CG8fwz0aowWPu1ciHZIOdjumvoUmzCEFG1Hu_SNmbq0jw1tU6ZPHeJlT5_R9vuM9CUn1-GOhkjl7Sk5bm3X49k_Z-RtebepH4rV-v6xXqyKIJgcCie0AeE186Ypta4a7owXUregJYhGWVdq33rUxnAhLLayHL_bUVWVQKfkjJz_dQMibr9y2Nn8szXGlIaB_AX_cVDm | 
    
| CODEN | IEEPAD | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IH CBEJK RIE RIO  | 
    
| DOI | 10.1109/FOCS54457.2022.00059 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics Computer Science  | 
    
| EISBN | 1665455195 9781665455190  | 
    
| EISSN | 2575-8454 | 
    
| EndPage | 566 | 
    
| ExternalDocumentID | 9996905 | 
    
| Genre | orig-research | 
    
| GroupedDBID | --Z 29O 6IE 6IH 6IK ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIO  | 
    
| ID | FETCH-LOGICAL-i203t-b27952c70c9d6778d1b9c237f57352d4ab67cfce799122aef36004f677482eb43 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Aug 27 02:53:24 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i203t-b27952c70c9d6778d1b9c237f57352d4ab67cfce799122aef36004f677482eb43 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | ieee_primary_9996905 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-Oct. | 
    
| PublicationDateYYYYMMDD | 2022-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct.  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Proceedings / annual Symposium on Foundations of Computer Science | 
    
| PublicationTitleAbbrev | FOCS | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0040504 | 
    
| Score | 2.2532282 | 
    
| Snippet | We revisit the classic geometric problem of computing the volume of the union of n 3-dimensional axis-parallel boxes (Klee's measure problem in 3 D). It is... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 555 | 
    
| SubjectTerms | (non-)combinatorial algorithms Atmospheric measurements Computer science fine-grained complexity theory geometric algorithms hyperclique detection Hypercubes Particle measurements Three-dimensional displays Upper bound Volume measurement  | 
    
| Title | A tight (non-combinatorial) conditional lower bound for Klee's Measure Problem in 3D | 
    
| URI | https://ieeexplore.ieee.org/document/9996905 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ71Mt4m_yUFQwWxtmjbNUaZjKFPBDXYbTfICwzHFdRf_el_abop48FZKISF57fu-17zvI-RcaQwCJxRLrRFMJGnCtAPFeMwtd9yEEfg65PAxGYzF_SSe1Mj1phcGAIrDZ9Dxl8W_fPtmVr5U1vXgXHnB0i2ZJmWv1vqri7gjEFVrXBiobv-p9-J1ZiRSQF5ocno10h8GKkX-6DfIcD1yeWzktbPKdcd8_hJl_O_Udkn7u1OPPm9y0B6pwaJJGmurBlq9uU2yM9zIsy5bZHRDc0_K6SWSf4Yxh_TYk2-MxSuKBNnOygohnXsPNaq99RJFdEsf5gAXSzosC4t-ZO9GQ2cLGt22ybh_N-oNWGWvwGY8iHKmuVQxNzIwynoZORtqZXgkXSwRlVmR6UQaZ0AihOQ8AxchOBIOHxUpBy2ifVLHWcIBoRbzoMsgCxJABhTLLObSpiEkgVShSvkhafklm76XChrTarWO_r59TLb9ppVH5k5IPf9YwSmm_lyfFXv-BesWrP8 | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5DD-pluk38bQ6CCnZr07RpjjId061TcIPdRpO8wnBMcd3Fv96XtpsiHryVUkhIXvu-7zXv-wi5kAqDIOXSiYzmDg-j0FEpSIcFzLCUac8HW4eMB2F3xB_HwbhCbta9MACQHz6Dpr3M_-WbN720pbKWBefSCpZuBpzzoOjWWn13EXm4vGyO81zZ6jy1X6zSjEASyHJVTqtH-sNCJc8gnSqJV2MXB0dem8tMNfXnL1nG_05ulzS-e_Xo8zoL7ZEKzGukujJroOW7WyM78VqgdVEnw1uaWVpOr5D-Oxh1SJAt_cZovKZIkc20qBHSmXVRo8qaL1HEt7Q3A7hc0LgoLdqRrR8Nnc6pf9cgo879sN11SoMFZ8pcP3MUEzJgWrhaGiskZzwlNfNFGgjEZYYnKhQ61SAQRDKWQOojPOIpPsojBor7-2QDZwkHhBrMhGkCiRsCcqBAJAETJvIgdIX0ZMQOSd0u2eS90NCYlKt19Pftc7LVHcb9Sf9h0Dsm23YDiwN0J2Qj-1jCKQKBTJ3l-_8FKs2wTA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%2F+annual+Symposium+on+Foundations+of+Computer+Science&rft.atitle=A+tight+%28non-combinatorial%29+conditional+lower+bound+for+Klee%27s+Measure+Problem+in+3D&rft.au=Kunnemann%2C+Marvin&rft.date=2022-10-01&rft.pub=IEEE&rft.eissn=2575-8454&rft.spage=555&rft.epage=566&rft_id=info:doi/10.1109%2FFOCS54457.2022.00059&rft.externalDocID=9996905 |