Deep Learning Based Off-Angle Iris Recognition

Even with trained operators and cooperative subjects, it is still possible to capture off-angle iris images. Considering the recent demands for stand-off iris biometric systems and the trend towards "on-the-move-acquisition", off-angle iris recognition became a hot topic within the biometr...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 4048 - 4052
Main Authors Jalilian, Ehsaneddin, Wimmer, Georg, Uhl, Andreas, Karakaya, Mahmut
Format Conference Proceeding
LanguageEnglish
Published IEEE 23.05.2022
Subjects
Online AccessGet full text
ISSN2379-190X
DOI10.1109/ICASSP43922.2022.9746090

Cover

Abstract Even with trained operators and cooperative subjects, it is still possible to capture off-angle iris images. Considering the recent demands for stand-off iris biometric systems and the trend towards "on-the-move-acquisition", off-angle iris recognition became a hot topic within the biometrics community. In this work, CNNs trained with the triplet loss function are applied to extract features for iris recognition. To analyze which parts of the eye are most suited for the CNN-based recognition system, experiments are carried out using image data from different parts of the eye (full eye, eye zoomed to iris, iris only, iris normalized, eye without iris). To analyze the impact of different gaze angles on the recognition performance, experiments are applied on: (1) different gaze angles separately, (2) image data with increasing differences in the gaze angles, and (3) corrected off-angle image data. The experiment results show superior performance of the CNN trained with the triplet loss on the iris images with more lateral gaze angles (≥ 30°). However, higher differences in the gaze angles between images deteriorate the network performance. Also, the results are about the same for the different parts of the eye and correcting the gaze angle did not really improve the performance of the CNN.
AbstractList Even with trained operators and cooperative subjects, it is still possible to capture off-angle iris images. Considering the recent demands for stand-off iris biometric systems and the trend towards "on-the-move-acquisition", off-angle iris recognition became a hot topic within the biometrics community. In this work, CNNs trained with the triplet loss function are applied to extract features for iris recognition. To analyze which parts of the eye are most suited for the CNN-based recognition system, experiments are carried out using image data from different parts of the eye (full eye, eye zoomed to iris, iris only, iris normalized, eye without iris). To analyze the impact of different gaze angles on the recognition performance, experiments are applied on: (1) different gaze angles separately, (2) image data with increasing differences in the gaze angles, and (3) corrected off-angle image data. The experiment results show superior performance of the CNN trained with the triplet loss on the iris images with more lateral gaze angles (≥ 30°). However, higher differences in the gaze angles between images deteriorate the network performance. Also, the results are about the same for the different parts of the eye and correcting the gaze angle did not really improve the performance of the CNN.
Author Karakaya, Mahmut
Jalilian, Ehsaneddin
Uhl, Andreas
Wimmer, Georg
Author_xml – sequence: 1
  givenname: Ehsaneddin
  surname: Jalilian
  fullname: Jalilian, Ehsaneddin
  organization: University of Salzburg,Department of Computer Science,Salzburg,Austria,5020
– sequence: 2
  givenname: Georg
  surname: Wimmer
  fullname: Wimmer, Georg
  organization: University of Salzburg,Department of Computer Science,Salzburg,Austria,5020
– sequence: 3
  givenname: Andreas
  surname: Uhl
  fullname: Uhl, Andreas
  organization: University of Salzburg,Department of Computer Science,Salzburg,Austria,5020
– sequence: 4
  givenname: Mahmut
  surname: Karakaya
  fullname: Karakaya, Mahmut
  organization: University of Salzburg,Department of Computer Science,Salzburg,Austria,5020
BookMark eNotj81KAzEUhaMo2Kk-gZu8wIw3P01yl7VaLQxUrIK7kszcGSI1Uybd-PYOWDh8Z_dxTsGu0pCIMS6gEgLwYbNa7nZvWqGUlYQJaLUBhAtWCGMWGqaYSzaTymIpEL5uWJHzNwA4q92MVU9ER16TH1NMPX_0mVq-7bpymfoD8c0YM3-nZuhTPMUh3bLrzh8y3Z17zj7Xzx-r17LevkxT6jJKUKcyCApWWbfQummCkxJdwM6it63RbbBao5CdU2Zi4z2aIGyLVpJRqiGv1Jzd_3sjEe2PY_zx4-_-_E39AS_zRKA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP43922.2022.9746090
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665405406
9781665405409
EISSN 2379-190X
EndPage 4052
ExternalDocumentID 9746090
Genre orig-research
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-b1eb7378544ccb82298b9f79a7d64db744912f83612fcaa96b17d972e633cea33
IEDL.DBID RIE
IngestDate Wed Aug 27 02:25:04 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-b1eb7378544ccb82298b9f79a7d64db744912f83612fcaa96b17d972e633cea33
PageCount 5
ParticipantIDs ieee_primary_9746090
PublicationCentury 2000
PublicationDate 2022-May-23
PublicationDateYYYYMMDD 2022-05-23
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May-23
  day: 23
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.2525482
Snippet Even with trained operators and cooperative subjects, it is still possible to capture off-angle iris images. Considering the recent demands for stand-off iris...
SourceID ieee
SourceType Publisher
StartPage 4048
SubjectTerms CNN
Deep learning
Feature extraction
Image recognition
Image segmentation
Iris recognition
Off-angle iris recognition
Signal processing
Speech recognition
Triplet loss
Title Deep Learning Based Off-Angle Iris Recognition
URI https://ieeexplore.ieee.org/document/9746090
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA61J724tOJODh6d6cwkM0mOtVqqUC3WQm8ly0sRZabI9OKvN5lO64IHLyEEQjbI95L3vu8hdFm59ixEgRba_1bJKJAJiCCzQFNFnE0XeaLw8CEbTOj9NJ020NWGCwMAVfAZhL5a-fJNoZf-q6zjbN8sEu6BvsV4tuJqbW5dzihfR-pEonPX647HI4e2iWdbuaLu-yOJSoUh_V00XI--Ch15DZelCvXHL2HG_05vD7W_2Hp4tMGhfdSA_ADtfBMabKHwBmCBay3VOb520GXwo7VBN5-_AfZp5vHTOpSoyNto0r997g2COlNC8OK2ugxUDIoRxlNKtVZew50rYZmQzGTUKEapiBPLiTNnrJZSZCpmRrAEMkI0SEIOUTMvcjhC2MbulAyLtE4lTY1_IXNmgDjc4jzWcIxafuWzxUoMY1Yv-uTv5lO07Xffu9sTcoaa5fsSzh2Kl-qiOr5PoP2axQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8IHtSLH2D8dgePbmxrt7ZHRAkoIBFIuJG1fSVGsxEzLv71tmPgRzx4aZYmzdb3kv1e-97v9xC6LlJ7GnxXcmlvqxLfTULgbqyBRAKbmM63ROH-IO5MyMM0mlbQzYYLAwBF8Rl49rHI5atMLu1VWcPEvrHPzQF9KyKERCu21ua_yyhh61odnze6reZoNDR4G1q-lRnK1T_aqBQo0t5D_fX7V8Ujr94yF578-CXN-N8P3Ef1L76eM9wg0QGqQHqIdr9JDdaQdwewcEo11blza8BLOU9au810_gaObTTvPK-LibK0jibt-3Gr45a9EtwXY-zcFQEIiikzhpFSWBV3JrimPKEqJkpQQngQaoZNQKNlkvBYBFRxGkKMsYQE4yNUTbMUjpGjA-MnRX0po4REyp6RGVWADXIxFkg4QTW789liJYcxKzd9-vf0FdrujPu9Wa87eDxDO9YTNvke4nNUzd-XcGEwPReXhSs_AfDFnhI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Deep+Learning+Based+Off-Angle+Iris+Recognition&rft.au=Jalilian%2C+Ehsaneddin&rft.au=Wimmer%2C+Georg&rft.au=Uhl%2C+Andreas&rft.au=Karakaya%2C+Mahmut&rft.date=2022-05-23&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=4048&rft.epage=4052&rft_id=info:doi/10.1109%2FICASSP43922.2022.9746090&rft.externalDocID=9746090