BaFFLe: Backdoor Detection via Feedback-based Federated Learning

Recent studies have shown that federated learning (FL) is vulnerable to poisoning attacks that inject a backdoor into the global model. These attacks are effective even when performed by a single client, and undetectable by most existing defensive techniques. In this paper, we propose Backdoor detec...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the International Conference on Distributed Computing Systems pp. 852 - 863
Main Authors Andreina, Sebastien, Marson, Giorgia Azzurra, Mollering, Helen, Karame, Ghassan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2021
Subjects
Online AccessGet full text
ISSN2575-8411
DOI10.1109/ICDCS51616.2021.00086

Cover

Abstract Recent studies have shown that federated learning (FL) is vulnerable to poisoning attacks that inject a backdoor into the global model. These attacks are effective even when performed by a single client, and undetectable by most existing defensive techniques. In this paper, we propose Backdoor detection via Feedback-based Federated Learning (BAFFLE), a novel defense to secure FL against backdoor attacks. The core idea behind BAFFLE is to leverage data of multiple clients not only for training but also for uncovering model poisoning. We exploit the availability of diverse datasets at the various clients by incorporating a feedback loop into the FL process, to integrate the views of those clients when deciding whether a given model update is genuine or not. We show that this powerful construct can achieve very high detection rates against state-of-the-art backdoor attacks, even when relying on straightforward methods to validate the model. Through empirical evaluation using the CIFAR-10 and FEMNIST datasets, we show that by combining the feedback loop with a method that suspects poisoning attempts by assessing the per-class classification performance of the updated model, BAFFLE reliably detects state-of-the-art backdoor attacks with a detection accuracy of 100% and a false-positive rate below 5%. Moreover, we show that our solution can detect adaptive attacks aimed at bypassing the defense.
AbstractList Recent studies have shown that federated learning (FL) is vulnerable to poisoning attacks that inject a backdoor into the global model. These attacks are effective even when performed by a single client, and undetectable by most existing defensive techniques. In this paper, we propose Backdoor detection via Feedback-based Federated Learning (BAFFLE), a novel defense to secure FL against backdoor attacks. The core idea behind BAFFLE is to leverage data of multiple clients not only for training but also for uncovering model poisoning. We exploit the availability of diverse datasets at the various clients by incorporating a feedback loop into the FL process, to integrate the views of those clients when deciding whether a given model update is genuine or not. We show that this powerful construct can achieve very high detection rates against state-of-the-art backdoor attacks, even when relying on straightforward methods to validate the model. Through empirical evaluation using the CIFAR-10 and FEMNIST datasets, we show that by combining the feedback loop with a method that suspects poisoning attempts by assessing the per-class classification performance of the updated model, BAFFLE reliably detects state-of-the-art backdoor attacks with a detection accuracy of 100% and a false-positive rate below 5%. Moreover, we show that our solution can detect adaptive attacks aimed at bypassing the defense.
Author Marson, Giorgia Azzurra
Mollering, Helen
Andreina, Sebastien
Karame, Ghassan
Author_xml – sequence: 1
  givenname: Sebastien
  surname: Andreina
  fullname: Andreina, Sebastien
  email: sebastien.andreina@neclab.eu
  organization: NEC Labs Europe,Heidelberg,Germany
– sequence: 2
  givenname: Giorgia Azzurra
  surname: Marson
  fullname: Marson, Giorgia Azzurra
  email: giorgia.marson@neclab.eu
  organization: NEC Labs Europe,Heidelberg,Germany
– sequence: 3
  givenname: Helen
  surname: Mollering
  fullname: Mollering, Helen
  email: moellering@encrypto.cs.tu-darmstadt.de
  organization: ENCRYPTO/TU Darmstadt,Darmstadt,Germany
– sequence: 4
  givenname: Ghassan
  surname: Karame
  fullname: Karame, Ghassan
  email: ghassan@karame.org
  organization: NEC Labs Europe,Heidelberg,Germany
BookMark eNotTttKxDAUjKLgdvULROgPtOakyUnqk27X6kLBB_V5OW1OJV5aaYvg329An2aGuTCJOBnGgYW4ApkDyPJ6V22rZwMImCupIJdSOjwSCSAarQ0U8lislLEmcxrgTCTz_B4zxmGxErcbquuGb9INdR9-HKd0ywt3SxiH9CdQWjP7NlpZSzP7KD1PtETWME1DGN7OxWlPnzNf_ONavNb3L9Vj1jw97Kq7JgtKFktG7Ly1yitWyvveQ1TSGgtOa48KAawFkn3XWV2idq2JBcNdS0gufijW4vJvNzDz_nsKXzT97kujUWNRHAAJFUqG
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICDCS51616.2021.00086
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1665445130
9781665445139
EISSN 2575-8411
EndPage 863
ExternalDocumentID 9546463
Genre orig-research
GroupedDBID 23M
29G
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-ae8d772d2e22ddfd1d7707571844d62611771a0fcc749648b5e8d5ecba6a8eed3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:26:52 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-ae8d772d2e22ddfd1d7707571844d62611771a0fcc749648b5e8d5ecba6a8eed3
PageCount 12
ParticipantIDs ieee_primary_9546463
PublicationCentury 2000
PublicationDate 2021-July
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-July
PublicationDecade 2020
PublicationTitle Proceedings of the International Conference on Distributed Computing Systems
PublicationTitleAbbrev ICDCS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0005863
Score 2.5197215
Snippet Recent studies have shown that federated learning (FL) is vulnerable to poisoning attacks that inject a backdoor into the global model. These attacks are...
SourceID ieee
SourceType Publisher
StartPage 852
SubjectTerms Adaptation models
backdoor attacks
Collaborative work
Computational modeling
Conferences
Data models
federated learning
Feedback loop
security
Training
Title BaFFLe: Backdoor Detection via Feedback-based Federated Learning
URI https://ieeexplore.ieee.org/document/9546463
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWsRbHhhxmoftJEyoLVFBFCFBpW6VY19QhZSgKmXg13NO0lYgBrY85Di6c3Kf7e-7I-TKeAZRAmQsNZHLuPEzFomYsxjcwFjpdSysGnn6JCcz_jAX8xa53mphAKAin4FjD6u9fFPotV0qG8SCSy6DNmnjMKu1Wjs6RySDRqHjufHgfjQevQiEM5aG4HtOhd1_VFCpAkjSJdNN1zVv5N1Zl6mjv35lZfzvu-2T_k6qR5-3QeiAtCA_JN1NrQbafLo9cjtUSfIIN3So9LspihUdQ1nRsHL6uVQ0wQekeIvZsGbw1GbkRDRKmwSsb30yS-5eRxPWVE9gS98NSqYgMgidjQ--b0yGTglDxAcYizg3OI2xu7WecjOtQx5LHqUCGwjQqZIqwj6DI9LJixyOCQW0oIwk_heFwemjigNtUj9LhQ5cCHV2QnrWIIuPOkHGorHF6d-Xz8iedUnNeT0nnXK1hguM7GV6Wbn0GwuSoog
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0gHvSECsZve_BoSz92260nA9iAAjEREm5kuzs1hKQ1pHjw1zvbFojGg7dum-02M2nnTfe9GULulKMQJUBixorbJlVuYnIWUjME21Naeh0yrUYejf3-lD7P2KxG7rdaGAAoyGdg6cNiL19lcq1_lbVDRn3qe3tkn2FWwUu11o7QwX2v0ug4dtgedHvdN4aARhMRXMcq0PuPHipFCIkaZLRZvGSOLK11Hlvy61ddxv8-3RFp7cR6xus2DB2TGqQnpLHp1mBUL2-TPHZEFA3hwegIuVRZtjJ6kBdErNT4XAgjwhvEeMnUgU3hUNfkRDxqVCVY31tkGj1Nun2z6p9gLlzby00BXCF4Vi64rlIJuiUIECFgNKJUYSKj92sdYSdSBjT0KY8ZTmAgY-ELjmt6p6SeZimcEQPQgj738cvIFCaQIvSkit0kZtKzIZDJOWlqg8w_yhIZ88oWF3-fviUH_cloOB8Oxi-X5FC7p2TAXpF6vlrDNcb5PL4p3PsNy-Kl2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+International+Conference+on+Distributed+Computing+Systems&rft.atitle=BaFFLe%3A+Backdoor+Detection+via+Feedback-based+Federated+Learning&rft.au=Andreina%2C+Sebastien&rft.au=Marson%2C+Giorgia+Azzurra&rft.au=Mollering%2C+Helen&rft.au=Karame%2C+Ghassan&rft.date=2021-07-01&rft.pub=IEEE&rft.eissn=2575-8411&rft.spage=852&rft.epage=863&rft_id=info:doi/10.1109%2FICDCS51616.2021.00086&rft.externalDocID=9546463