ViM: Out-Of-Distribution with Virtual-logit Matching

Most of the existing Out-Of-Distribution (OOD) detection algorithms depend on single input source: the feature, the logit, or the softmax probability. However, the immense diversity of the OOD examples makes such methods fragile. There are OOD samples that are easy to identify in the feature space w...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 4911 - 4920
Main Authors Wang, Haoqi, Li, Zhizhong, Feng, Litong, Zhang, Wayne
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2022
Subjects
Online AccessGet full text
ISSN1063-6919
DOI10.1109/CVPR52688.2022.00487

Cover

Abstract Most of the existing Out-Of-Distribution (OOD) detection algorithms depend on single input source: the feature, the logit, or the softmax probability. However, the immense diversity of the OOD examples makes such methods fragile. There are OOD samples that are easy to identify in the feature space while hard to distinguish in the logit space and vice versa. Motivated by this observation, we propose a novel OOD scoring method named Virtual-logit Matching (ViM), which combines the class-agnostic score from feature space and the In-Distribution (ID) class-dependent logits. Specifically, an additional logit representing the virtual OOD class is generated from the residual of the feature against the principal space, and then matched with the original logits by a constant scaling. The probability of this virtual logit after softmax is the indicator of OOD-ness. To facilitate the evaluation of large-scale OOD detection in academia, we create a new OOD dataset for ImageNet1K, which is human-annotated and is 8.8× the size of existing datasets. We conducted extensive experiments, including CNNs and vision transformers, to demonstrate the effectiveness of the proposed ViM score. In particular, using the BiT-S model, our method gets an average AUROC 90.91% on four difficult OOD benchmarks, which is 4% ahead of the best baseline. Code and dataset are available at https://github.com/haoqiwang/vim.
AbstractList Most of the existing Out-Of-Distribution (OOD) detection algorithms depend on single input source: the feature, the logit, or the softmax probability. However, the immense diversity of the OOD examples makes such methods fragile. There are OOD samples that are easy to identify in the feature space while hard to distinguish in the logit space and vice versa. Motivated by this observation, we propose a novel OOD scoring method named Virtual-logit Matching (ViM), which combines the class-agnostic score from feature space and the In-Distribution (ID) class-dependent logits. Specifically, an additional logit representing the virtual OOD class is generated from the residual of the feature against the principal space, and then matched with the original logits by a constant scaling. The probability of this virtual logit after softmax is the indicator of OOD-ness. To facilitate the evaluation of large-scale OOD detection in academia, we create a new OOD dataset for ImageNet1K, which is human-annotated and is 8.8× the size of existing datasets. We conducted extensive experiments, including CNNs and vision transformers, to demonstrate the effectiveness of the proposed ViM score. In particular, using the BiT-S model, our method gets an average AUROC 90.91% on four difficult OOD benchmarks, which is 4% ahead of the best baseline. Code and dataset are available at https://github.com/haoqiwang/vim.
Author Zhang, Wayne
Wang, Haoqi
Feng, Litong
Li, Zhizhong
Author_xml – sequence: 1
  givenname: Haoqi
  surname: Wang
  fullname: Wang, Haoqi
  email: wanghaoqi@sensetime.com
  organization: SenseTime Research
– sequence: 2
  givenname: Zhizhong
  surname: Li
  fullname: Li, Zhizhong
  email: lizz@sensetime.com
  organization: SenseTime Research
– sequence: 3
  givenname: Litong
  surname: Feng
  fullname: Feng, Litong
  email: fenglitong@sensetime.com
  organization: SenseTime Research
– sequence: 4
  givenname: Wayne
  surname: Zhang
  fullname: Zhang, Wayne
  email: wayne.zhang@sensetime.com
  organization: SenseTime Research
BookMark eNotzMtKxDAUANAoCs6M8wW66A-k3jx6k7iT-oQZKqLdDkmbzERqK22K-PcKujq7syQn_dB7Qi4Z5IyBuSrr55eCo9Y5B85zAKnVEVkyxEKikSiOyYIBCoqGmTOynqZ3ABCcMTR6QWQdt9dZNSdaBXobpzRGN6c49NlXTIesjmOabUe7YR9TtrWpOcR-f05Og-0mv_53Rd7u717LR7qpHp7Kmw2NHESiVkPBmRJMS-WNZFaAVwGFcaZRgBYwtNaIwlqjhHMBuW5bdKEJDYJttFiRi783eu93n2P8sOP3zmj1m0nxA_EaRzk
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR52688.2022.00487
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1665469463
9781665469463
EISSN 1063-6919
EndPage 4920
ExternalDocumentID 9879414
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-a80521731847e941a30e7f639b9c706a06fda935aa973bbf628dd6bfcfc60ac83
IEDL.DBID RIE
IngestDate Wed Aug 27 02:15:10 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-a80521731847e941a30e7f639b9c706a06fda935aa973bbf628dd6bfcfc60ac83
PageCount 10
ParticipantIDs ieee_primary_9879414
PublicationCentury 2000
PublicationDate 2022-June
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.6540544
Snippet Most of the existing Out-Of-Distribution (OOD) detection algorithms depend on single input source: the feature, the logit, or the softmax probability. However,...
SourceID ieee
SourceType Publisher
StartPage 4911
SubjectTerms Benchmark testing
categorization
Codes
Computational modeling
Computer architecture
Computer vision
Feature extraction
Recognition: detection
retrieval; Datasets and evaluation; Self-& semi-& meta- & unsupervised learning
Transformers
Title ViM: Out-Of-Distribution with Virtual-logit Matching
URI https://ieeexplore.ieee.org/document/9879414
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qT56qtuKbHDyaNvvKw2u1FGFtEVt6K0k2gSK00u5e_PUm2bWiePC2LLtkdsNk8k1mvg_glhsf5ATFPJUOoGSF8znt2fKsZtZGhVSBSDt_puNZ-rTIFi242_fCGGNC8Znp-8twll9sdOVTZQOHj0VQrT5gnNa9Wvt8SuKQDBW86Y6LiBgM59MXT2biC7hiT8uZ8p8aKiGEjDqQfw1eV4689atS9fXHL17G_1p3BL3vZj003YehY2iZ9Ql0mt0lanx314V0vsrv0aQq8cTiB8-X20hdIZ-LRfPV1reSYG9OiXK3QvvcVA9mo8fX4Rg3mgl4FZOkxDJIFDDnqSkzzhyZEMOs24YooRmhklBbSJFkUgqWKGVpzIuCKqutpkRqnpxCe71ZmzNA2j0Za_eCyWRKpZQ6MpHDV5GVDnQKcg5d_xOW7zUtxrL5_ou_b1_CoZ-GusrqCtrltjLXLp6X6iZM5Cc9C5-X
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4heNATKhh_24NHB93WdatXlKAyIAYIN9J2bUJIwOB28a-37SZG48Hbsmzp25rX1-_1ve8DuE2UDXKMegnhBqBEmfE5adnytIy19jMuHJF2OqT9KXmeR_Ma3O16YZRSrvhMte2lO8vPNrKwqbKOwcfMqVbvRYSQqOzW2mVUQoNlKEuq_jgfs053Nn61dCa2hCuwxJwk-ami4oJIrwHp1_Bl7ciqXeSiLT9-MTP-175DaH2366HxLhAdQU2tj6FR7S9R5b3vTSCzZXqPRkXujbT3YBlzK7ErZLOxaLbc2mYSz5qTo9Ss0TY71YJp73HS7XuVaoK3DHCYe9yJFMTGV0msjDk8xCrWZiMimIwx5ZjqjLMw4pzFoRCaBkmWUaGllhRzmYQnUF9v1uoUkDRPBtK8oCJOKOdc-so3CMvX3MBOhs-gaX_C4q0kxlhU33_-9-0b2O9P0sFi8DR8uYADOyVlzdUl1PNtoa5MdM_FtZvUT8rXouQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=ViM%3A+Out-Of-Distribution+with+Virtual-logit+Matching&rft.au=Wang%2C+Haoqi&rft.au=Li%2C+Zhizhong&rft.au=Feng%2C+Litong&rft.au=Zhang%2C+Wayne&rft.date=2022-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=4911&rft.epage=4920&rft_id=info:doi/10.1109%2FCVPR52688.2022.00487&rft.externalDocID=9879414