ViM: Out-Of-Distribution with Virtual-logit Matching
Most of the existing Out-Of-Distribution (OOD) detection algorithms depend on single input source: the feature, the logit, or the softmax probability. However, the immense diversity of the OOD examples makes such methods fragile. There are OOD samples that are easy to identify in the feature space w...
Saved in:
| Published in | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 4911 - 4920 |
|---|---|
| Main Authors | , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.06.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1063-6919 |
| DOI | 10.1109/CVPR52688.2022.00487 |
Cover
| Abstract | Most of the existing Out-Of-Distribution (OOD) detection algorithms depend on single input source: the feature, the logit, or the softmax probability. However, the immense diversity of the OOD examples makes such methods fragile. There are OOD samples that are easy to identify in the feature space while hard to distinguish in the logit space and vice versa. Motivated by this observation, we propose a novel OOD scoring method named Virtual-logit Matching (ViM), which combines the class-agnostic score from feature space and the In-Distribution (ID) class-dependent logits. Specifically, an additional logit representing the virtual OOD class is generated from the residual of the feature against the principal space, and then matched with the original logits by a constant scaling. The probability of this virtual logit after softmax is the indicator of OOD-ness. To facilitate the evaluation of large-scale OOD detection in academia, we create a new OOD dataset for ImageNet1K, which is human-annotated and is 8.8× the size of existing datasets. We conducted extensive experiments, including CNNs and vision transformers, to demonstrate the effectiveness of the proposed ViM score. In particular, using the BiT-S model, our method gets an average AUROC 90.91% on four difficult OOD benchmarks, which is 4% ahead of the best baseline. Code and dataset are available at https://github.com/haoqiwang/vim. |
|---|---|
| AbstractList | Most of the existing Out-Of-Distribution (OOD) detection algorithms depend on single input source: the feature, the logit, or the softmax probability. However, the immense diversity of the OOD examples makes such methods fragile. There are OOD samples that are easy to identify in the feature space while hard to distinguish in the logit space and vice versa. Motivated by this observation, we propose a novel OOD scoring method named Virtual-logit Matching (ViM), which combines the class-agnostic score from feature space and the In-Distribution (ID) class-dependent logits. Specifically, an additional logit representing the virtual OOD class is generated from the residual of the feature against the principal space, and then matched with the original logits by a constant scaling. The probability of this virtual logit after softmax is the indicator of OOD-ness. To facilitate the evaluation of large-scale OOD detection in academia, we create a new OOD dataset for ImageNet1K, which is human-annotated and is 8.8× the size of existing datasets. We conducted extensive experiments, including CNNs and vision transformers, to demonstrate the effectiveness of the proposed ViM score. In particular, using the BiT-S model, our method gets an average AUROC 90.91% on four difficult OOD benchmarks, which is 4% ahead of the best baseline. Code and dataset are available at https://github.com/haoqiwang/vim. |
| Author | Zhang, Wayne Wang, Haoqi Feng, Litong Li, Zhizhong |
| Author_xml | – sequence: 1 givenname: Haoqi surname: Wang fullname: Wang, Haoqi email: wanghaoqi@sensetime.com organization: SenseTime Research – sequence: 2 givenname: Zhizhong surname: Li fullname: Li, Zhizhong email: lizz@sensetime.com organization: SenseTime Research – sequence: 3 givenname: Litong surname: Feng fullname: Feng, Litong email: fenglitong@sensetime.com organization: SenseTime Research – sequence: 4 givenname: Wayne surname: Zhang fullname: Zhang, Wayne email: wayne.zhang@sensetime.com organization: SenseTime Research |
| BookMark | eNotzMtKxDAUANAoCs6M8wW66A-k3jx6k7iT-oQZKqLdDkmbzERqK22K-PcKujq7syQn_dB7Qi4Z5IyBuSrr55eCo9Y5B85zAKnVEVkyxEKikSiOyYIBCoqGmTOynqZ3ABCcMTR6QWQdt9dZNSdaBXobpzRGN6c49NlXTIesjmOabUe7YR9TtrWpOcR-f05Og-0mv_53Rd7u717LR7qpHp7Kmw2NHESiVkPBmRJMS-WNZFaAVwGFcaZRgBYwtNaIwlqjhHMBuW5bdKEJDYJttFiRi783eu93n2P8sOP3zmj1m0nxA_EaRzk |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR52688.2022.00487 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 1665469463 9781665469463 |
| EISSN | 1063-6919 |
| EndPage | 4920 |
| ExternalDocumentID | 9879414 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i203t-a80521731847e941a30e7f639b9c706a06fda935aa973bbf628dd6bfcfc60ac83 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:15:10 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-a80521731847e941a30e7f639b9c706a06fda935aa973bbf628dd6bfcfc60ac83 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_9879414 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-June |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-June |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.6540544 |
| Snippet | Most of the existing Out-Of-Distribution (OOD) detection algorithms depend on single input source: the feature, the logit, or the softmax probability. However,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 4911 |
| SubjectTerms | Benchmark testing categorization Codes Computational modeling Computer architecture Computer vision Feature extraction Recognition: detection retrieval; Datasets and evaluation; Self-& semi-& meta- & unsupervised learning Transformers |
| Title | ViM: Out-Of-Distribution with Virtual-logit Matching |
| URI | https://ieeexplore.ieee.org/document/9879414 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qT56qtuKbHDyaNvvKw2u1FGFtEVt6K0k2gSK00u5e_PUm2bWiePC2LLtkdsNk8k1mvg_glhsf5ATFPJUOoGSF8znt2fKsZtZGhVSBSDt_puNZ-rTIFi242_fCGGNC8Znp-8twll9sdOVTZQOHj0VQrT5gnNa9Wvt8SuKQDBW86Y6LiBgM59MXT2biC7hiT8uZ8p8aKiGEjDqQfw1eV4689atS9fXHL17G_1p3BL3vZj003YehY2iZ9Ql0mt0lanx314V0vsrv0aQq8cTiB8-X20hdIZ-LRfPV1reSYG9OiXK3QvvcVA9mo8fX4Rg3mgl4FZOkxDJIFDDnqSkzzhyZEMOs24YooRmhklBbSJFkUgqWKGVpzIuCKqutpkRqnpxCe71ZmzNA2j0Za_eCyWRKpZQ6MpHDV5GVDnQKcg5d_xOW7zUtxrL5_ou_b1_CoZ-GusrqCtrltjLXLp6X6iZM5Cc9C5-X |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4heNATKhh_24NHB93WdatXlKAyIAYIN9J2bUJIwOB28a-37SZG48Hbsmzp25rX1-_1ve8DuE2UDXKMegnhBqBEmfE5adnytIy19jMuHJF2OqT9KXmeR_Ma3O16YZRSrvhMte2lO8vPNrKwqbKOwcfMqVbvRYSQqOzW2mVUQoNlKEuq_jgfs053Nn61dCa2hCuwxJwk-ami4oJIrwHp1_Bl7ciqXeSiLT9-MTP-175DaH2366HxLhAdQU2tj6FR7S9R5b3vTSCzZXqPRkXujbT3YBlzK7ErZLOxaLbc2mYSz5qTo9Ss0TY71YJp73HS7XuVaoK3DHCYe9yJFMTGV0msjDk8xCrWZiMimIwx5ZjqjLMw4pzFoRCaBkmWUaGllhRzmYQnUF9v1uoUkDRPBtK8oCJOKOdc-so3CMvX3MBOhs-gaX_C4q0kxlhU33_-9-0b2O9P0sFi8DR8uYADOyVlzdUl1PNtoa5MdM_FtZvUT8rXouQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=ViM%3A+Out-Of-Distribution+with+Virtual-logit+Matching&rft.au=Wang%2C+Haoqi&rft.au=Li%2C+Zhizhong&rft.au=Feng%2C+Litong&rft.au=Zhang%2C+Wayne&rft.date=2022-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=4911&rft.epage=4920&rft_id=info:doi/10.1109%2FCVPR52688.2022.00487&rft.externalDocID=9879414 |