A Real-time Emotion Recognition System Based on an AI System-On-Chip Design
In this paper, we developed and integrated a realtime emotion recognition system using an AI system-on-chip design. The emotion recognition platform combined three different physiological signals, Electroencephalogram (EEG), electrocardiogram (ECG), and photoplethysmogram (PPG) as the classification...
Saved in:
| Published in | 2020 International SoC Design Conference (ISOCC) pp. 29 - 30 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
21.10.2020
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/ISOCC50952.2020.9333072 |
Cover
| Abstract | In this paper, we developed and integrated a realtime emotion recognition system using an AI system-on-chip design. The emotion recognition platform combined three different physiological signals, Electroencephalogram (EEG), electrocardiogram (ECG), and photoplethysmogram (PPG) as the classification resources. A 3-to-1 Bluetooth piconet was deployed to transmit all physiological signals on a single platform access point and to make use of low power wireless technologies. The system then integrated an AI computing chip with a convolution neural network (CNN) structure to classify three emotions, happiness, anger, and sadness. The average accuracy for a subject-independent classification reached 72.66%. The proposed system was integrated with the RISC-V processor and AI SOC to implement real-time monitoring and classification on edge. |
|---|---|
| AbstractList | In this paper, we developed and integrated a realtime emotion recognition system using an AI system-on-chip design. The emotion recognition platform combined three different physiological signals, Electroencephalogram (EEG), electrocardiogram (ECG), and photoplethysmogram (PPG) as the classification resources. A 3-to-1 Bluetooth piconet was deployed to transmit all physiological signals on a single platform access point and to make use of low power wireless technologies. The system then integrated an AI computing chip with a convolution neural network (CNN) structure to classify three emotions, happiness, anger, and sadness. The average accuracy for a subject-independent classification reached 72.66%. The proposed system was integrated with the RISC-V processor and AI SOC to implement real-time monitoring and classification on edge. |
| Author | Fang, Wai-Chi Li, Wei-Chih Yang, Cheng-Jie |
| Author_xml | – sequence: 1 givenname: Wei-Chih surname: Li fullname: Li, Wei-Chih organization: National Chiao Tung University,Department of Electronics Engineering & Institute of Electronics,Hsinchu,Taiwan R.O.C.,30010 – sequence: 2 givenname: Cheng-Jie surname: Yang fullname: Yang, Cheng-Jie organization: National Chiao Tung University,Department of Electronics Engineering & Institute of Electronics,Hsinchu,Taiwan R.O.C.,30010 – sequence: 3 givenname: Wai-Chi surname: Fang fullname: Fang, Wai-Chi email: wfang@mail.nctu.edu.tw organization: National Chiao Tung University,Department of Electronics Engineering & Institute of Electronics,Hsinchu,Taiwan R.O.C.,30010 |
| BookMark | eNotj8FOwzAQRI1ED1D6BRzwDzh413FiH0MoEFEpUgvnyo03xVLjVE0u_XsiyGlm3mE0c89uYx-JsSeQCYC0z9WuLkstrcYEJcrEKqVkjjdsZXMDORowSgHesc-Cb8mdxBg64uuuH0MfJ9L0xxj-_O46jNTxFzeQ51N2kRfVTEUdRfkTzvyVhnCMD2zRutNAq1mX7Ptt_VV-iE39XpXFRgSUahQuA7C29UYCNXnaqBQPh5Sy1GmHCGR8o5Xx2ts2BevtNFxmupG-zVEr59SSPf73BiLany-hc5frfr6ofgHBbkn2 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ISOCC50952.2020.9333072 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings Consulter via IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: Consulter via IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781728183312 1728183316 |
| EndPage | 30 |
| ExternalDocumentID | 9333072 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i203t-a61199fd801ec74c342bb4e64a5a221e8dc538d5d9f419d9307065c0df7253aa3 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:37:54 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-a61199fd801ec74c342bb4e64a5a221e8dc538d5d9f419d9307065c0df7253aa3 |
| PageCount | 2 |
| ParticipantIDs | ieee_primary_9333072 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Oct.-21 |
| PublicationDateYYYYMMDD | 2020-10-21 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-Oct.-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationTitle | 2020 International SoC Design Conference (ISOCC) |
| PublicationTitleAbbrev | ISOCC |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7614391 |
| Snippet | In this paper, we developed and integrated a realtime emotion recognition system using an AI system-on-chip design. The emotion recognition platform combined... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 29 |
| SubjectTerms | affective computing Artificial intelligence Biomedical monitoring convolutional neural network Electroencephalography Emotion recognition multimodal analysis Neural networks physiological signals Real-time systems System-on-chip |
| Title | A Real-time Emotion Recognition System Based on an AI System-On-Chip Design |
| URI | https://ieeexplore.ieee.org/document/9333072 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Qkyc1YPydHjzasXZtWY84IaBBDErCjfRnJCaDkHHxr7fdBkbjwVvXLGnTt75v7fu-9wC4VZYph4n1x1SjEE11CBLyFEnsGLXEYEeDdnj8zIcz-jhn8wa422thrLUl-cxGoVnG8s1Kb8NVWccfvv0n6R3uQTfllVarpmzhWHRGr5Ms8_jHgr6KxFH99o-yKSVqDI7AeDdeRRb5iLaFivTnr1SM_53QMWh_6_Pgyx55TkDD5i3w1INT_9eHQrV42K-q88Dpjh_k21VycnjvcctA_yxz2BvVvWiSo-x9uYYPJaOjDWaD_ls2RHWpBLQkcVIgyTEWwhmPN1Z3qU4oUYpaTiWThGCbGu09m2FGOIqFEWGnc6Zj47qEJVImp6CZr3J7BiAJ-aoTqnEqNZU8Tp0y1sVaBrNhI85BKyzEYl1lw1jUa3Dxd_clOAzGCN6e4CvQLDZbe-1hvFA3pf2-AAXXnYk |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8IHvSkBozf9uDRjrVrx3bECQH5MggJN9LPSEwGMdvFv952GxiNB29ds6RN3_p-a9_v9x4A90IzYTDR9piqBKKRdEHCMEIcG0Y1UdhQpx0eT8L-gj4v2bIGHvZaGK11QT7TnmsWsXy1kbm7KmvZw7f9JK3DPWCUUlaqtSrSFvbj1uB1miQWAZlTWBHfq97_UTilwI3eMRjvRizpIu9englPfv5KxvjfKZ2A5rdCD77ssecU1HTaAMMOnNn_PuTqxcNuWZ8HznYMIdsu05PDR4tcCtpnnsLOoOpF0xQlb-stfCo4HU2w6HXnSR9VxRLQmvhBhniIcRwbZRFHyzaVASVCUB1SzjghWEdKWt-mmIoNxbGK3V4PmfSVaRMWcB6cgXq6SfU5gMRlrA6oxBGXlId-ZITSxpfcGQ6r-AI03EKstmU-jFW1Bpd_d9-Bw_58PFqNBpPhFThyhnG-n-BrUM8-cn1jQT0Tt4UtvwB4lKDW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+International+SoC+Design+Conference+%28ISOCC%29&rft.atitle=A+Real-time+Emotion+Recognition+System+Based+on+an+AI+System-On-Chip+Design&rft.au=Li%2C+Wei-Chih&rft.au=Yang%2C+Cheng-Jie&rft.au=Fang%2C+Wai-Chi&rft.date=2020-10-21&rft.pub=IEEE&rft.spage=29&rft.epage=30&rft_id=info:doi/10.1109%2FISOCC50952.2020.9333072&rft.externalDocID=9333072 |