A Real-time Emotion Recognition System Based on an AI System-On-Chip Design

In this paper, we developed and integrated a realtime emotion recognition system using an AI system-on-chip design. The emotion recognition platform combined three different physiological signals, Electroencephalogram (EEG), electrocardiogram (ECG), and photoplethysmogram (PPG) as the classification...

Full description

Saved in:
Bibliographic Details
Published in2020 International SoC Design Conference (ISOCC) pp. 29 - 30
Main Authors Li, Wei-Chih, Yang, Cheng-Jie, Fang, Wai-Chi
Format Conference Proceeding
LanguageEnglish
Published IEEE 21.10.2020
Subjects
Online AccessGet full text
DOI10.1109/ISOCC50952.2020.9333072

Cover

Abstract In this paper, we developed and integrated a realtime emotion recognition system using an AI system-on-chip design. The emotion recognition platform combined three different physiological signals, Electroencephalogram (EEG), electrocardiogram (ECG), and photoplethysmogram (PPG) as the classification resources. A 3-to-1 Bluetooth piconet was deployed to transmit all physiological signals on a single platform access point and to make use of low power wireless technologies. The system then integrated an AI computing chip with a convolution neural network (CNN) structure to classify three emotions, happiness, anger, and sadness. The average accuracy for a subject-independent classification reached 72.66%. The proposed system was integrated with the RISC-V processor and AI SOC to implement real-time monitoring and classification on edge.
AbstractList In this paper, we developed and integrated a realtime emotion recognition system using an AI system-on-chip design. The emotion recognition platform combined three different physiological signals, Electroencephalogram (EEG), electrocardiogram (ECG), and photoplethysmogram (PPG) as the classification resources. A 3-to-1 Bluetooth piconet was deployed to transmit all physiological signals on a single platform access point and to make use of low power wireless technologies. The system then integrated an AI computing chip with a convolution neural network (CNN) structure to classify three emotions, happiness, anger, and sadness. The average accuracy for a subject-independent classification reached 72.66%. The proposed system was integrated with the RISC-V processor and AI SOC to implement real-time monitoring and classification on edge.
Author Fang, Wai-Chi
Li, Wei-Chih
Yang, Cheng-Jie
Author_xml – sequence: 1
  givenname: Wei-Chih
  surname: Li
  fullname: Li, Wei-Chih
  organization: National Chiao Tung University,Department of Electronics Engineering & Institute of Electronics,Hsinchu,Taiwan R.O.C.,30010
– sequence: 2
  givenname: Cheng-Jie
  surname: Yang
  fullname: Yang, Cheng-Jie
  organization: National Chiao Tung University,Department of Electronics Engineering & Institute of Electronics,Hsinchu,Taiwan R.O.C.,30010
– sequence: 3
  givenname: Wai-Chi
  surname: Fang
  fullname: Fang, Wai-Chi
  email: wfang@mail.nctu.edu.tw
  organization: National Chiao Tung University,Department of Electronics Engineering & Institute of Electronics,Hsinchu,Taiwan R.O.C.,30010
BookMark eNotj8FOwzAQRI1ED1D6BRzwDzh413FiH0MoEFEpUgvnyo03xVLjVE0u_XsiyGlm3mE0c89uYx-JsSeQCYC0z9WuLkstrcYEJcrEKqVkjjdsZXMDORowSgHesc-Cb8mdxBg64uuuH0MfJ9L0xxj-_O46jNTxFzeQ51N2kRfVTEUdRfkTzvyVhnCMD2zRutNAq1mX7Ptt_VV-iE39XpXFRgSUahQuA7C29UYCNXnaqBQPh5Sy1GmHCGR8o5Xx2ts2BevtNFxmupG-zVEr59SSPf73BiLany-hc5frfr6ofgHBbkn2
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISOCC50952.2020.9333072
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
Consulter via IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: Consulter via IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728183312
1728183316
EndPage 30
ExternalDocumentID 9333072
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-a61199fd801ec74c342bb4e64a5a221e8dc538d5d9f419d9307065c0df7253aa3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:54 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-a61199fd801ec74c342bb4e64a5a221e8dc538d5d9f419d9307065c0df7253aa3
PageCount 2
ParticipantIDs ieee_primary_9333072
PublicationCentury 2000
PublicationDate 2020-Oct.-21
PublicationDateYYYYMMDD 2020-10-21
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-Oct.-21
  day: 21
PublicationDecade 2020
PublicationTitle 2020 International SoC Design Conference (ISOCC)
PublicationTitleAbbrev ISOCC
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7614391
Snippet In this paper, we developed and integrated a realtime emotion recognition system using an AI system-on-chip design. The emotion recognition platform combined...
SourceID ieee
SourceType Publisher
StartPage 29
SubjectTerms affective computing
Artificial intelligence
Biomedical monitoring
convolutional neural network
Electroencephalography
Emotion recognition
multimodal analysis
Neural networks
physiological signals
Real-time systems
System-on-chip
Title A Real-time Emotion Recognition System Based on an AI System-On-Chip Design
URI https://ieeexplore.ieee.org/document/9333072
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Qkyc1YPydHjzasXZtWY84IaBBDErCjfRnJCaDkHHxr7fdBkbjwVvXLGnTt75v7fu-9wC4VZYph4n1x1SjEE11CBLyFEnsGLXEYEeDdnj8zIcz-jhn8wa422thrLUl-cxGoVnG8s1Kb8NVWccfvv0n6R3uQTfllVarpmzhWHRGr5Ms8_jHgr6KxFH99o-yKSVqDI7AeDdeRRb5iLaFivTnr1SM_53QMWh_6_Pgyx55TkDD5i3w1INT_9eHQrV42K-q88Dpjh_k21VycnjvcctA_yxz2BvVvWiSo-x9uYYPJaOjDWaD_ls2RHWpBLQkcVIgyTEWwhmPN1Z3qU4oUYpaTiWThGCbGu09m2FGOIqFEWGnc6Zj47qEJVImp6CZr3J7BiAJ-aoTqnEqNZU8Tp0y1sVaBrNhI85BKyzEYl1lw1jUa3Dxd_clOAzGCN6e4CvQLDZbe-1hvFA3pf2-AAXXnYk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8IHvSkBozf9uDRjrVrx3bECQH5MggJN9LPSEwGMdvFv952GxiNB29ds6RN3_p-a9_v9x4A90IzYTDR9piqBKKRdEHCMEIcG0Y1UdhQpx0eT8L-gj4v2bIGHvZaGK11QT7TnmsWsXy1kbm7KmvZw7f9JK3DPWCUUlaqtSrSFvbj1uB1miQWAZlTWBHfq97_UTilwI3eMRjvRizpIu9englPfv5KxvjfKZ2A5rdCD77ssecU1HTaAMMOnNn_PuTqxcNuWZ8HznYMIdsu05PDR4tcCtpnnsLOoOpF0xQlb-stfCo4HU2w6HXnSR9VxRLQmvhBhniIcRwbZRFHyzaVASVCUB1SzjghWEdKWt-mmIoNxbGK3V4PmfSVaRMWcB6cgXq6SfU5gMRlrA6oxBGXlId-ZITSxpfcGQ6r-AI03EKstmU-jFW1Bpd_d9-Bw_58PFqNBpPhFThyhnG-n-BrUM8-cn1jQT0Tt4UtvwB4lKDW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+International+SoC+Design+Conference+%28ISOCC%29&rft.atitle=A+Real-time+Emotion+Recognition+System+Based+on+an+AI+System-On-Chip+Design&rft.au=Li%2C+Wei-Chih&rft.au=Yang%2C+Cheng-Jie&rft.au=Fang%2C+Wai-Chi&rft.date=2020-10-21&rft.pub=IEEE&rft.spage=29&rft.epage=30&rft_id=info:doi/10.1109%2FISOCC50952.2020.9333072&rft.externalDocID=9333072