Adaptive Gait Phase Segmentation Based on the Time-Varying Identification of the Ankle Dynamics: Technique and Simulation Results

Gait abnormalities introduce undesired patterns that limit stability, efficiency, and finally, walker independence. Most of the current algorithms for the identification of gait events using kinematic and inertial data have obtained high performance in healthy subjects. However, most of them showed...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics pp. 734 - 739
Main Authors Perez-Ibarra, Juan C., Siqueira, Adriano A. G., Krebs, Hermano I.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2020
Subjects
Online AccessGet full text
ISSN2155-1782
DOI10.1109/BioRob49111.2020.9224404

Cover

Abstract Gait abnormalities introduce undesired patterns that limit stability, efficiency, and finally, walker independence. Most of the current algorithms for the identification of gait events using kinematic and inertial data have obtained high performance in healthy subjects. However, most of them showed limited performance when tested with impaired subjects. We hypothesize that to improve gait event detection one must take into consideration the differences between the dynamics of each phase. In this paper, we developed and evaluated a novel methodology for adaptation of a set of parameters for gait event detection using mechanical perturbations. Our proposal employs an ensemble-based procedure for the characterization of the ankle dynamics. We based our proposal on a hybrid model of the human dynamics during gait where the parameters of the dynamics model are abruptly changed according to a Markov chain. In this document, we described the adaptive algorithm and presented preliminary results on a gait simulator. We demonstrated the ability of the algorithm to adapt the parameters according to the changes in human walking.
AbstractList Gait abnormalities introduce undesired patterns that limit stability, efficiency, and finally, walker independence. Most of the current algorithms for the identification of gait events using kinematic and inertial data have obtained high performance in healthy subjects. However, most of them showed limited performance when tested with impaired subjects. We hypothesize that to improve gait event detection one must take into consideration the differences between the dynamics of each phase. In this paper, we developed and evaluated a novel methodology for adaptation of a set of parameters for gait event detection using mechanical perturbations. Our proposal employs an ensemble-based procedure for the characterization of the ankle dynamics. We based our proposal on a hybrid model of the human dynamics during gait where the parameters of the dynamics model are abruptly changed according to a Markov chain. In this document, we described the adaptive algorithm and presented preliminary results on a gait simulator. We demonstrated the ability of the algorithm to adapt the parameters according to the changes in human walking.
Author Siqueira, Adriano A. G.
Perez-Ibarra, Juan C.
Krebs, Hermano I.
Author_xml – sequence: 1
  givenname: Juan C.
  surname: Perez-Ibarra
  fullname: Perez-Ibarra, Juan C.
  organization: University of São Paulo at São Carlos,Department of Mechanical Engineering,Brazil
– sequence: 2
  givenname: Adriano A. G.
  surname: Siqueira
  fullname: Siqueira, Adriano A. G.
  organization: University of São Paulo at São Carlos,Department of Mechanical Engineering,Brazil
– sequence: 3
  givenname: Hermano I.
  surname: Krebs
  fullname: Krebs, Hermano I.
  organization: Massachusetts Institute of Technology,Department of Mechanical Engineering,Cambridge,MA,USA
BookMark eNotkFFPwjAUhavRREB-gS_9A8PbbmWdb4CKJCQaQF_J3XoL1a1DVkx49J-7CC_n3Jx8Ock9XXbla0-McQEDISC7H7t6UedJJoQYSJAwyKRMEkguWFekUguVQaouWUcKpSKRannD-k3zCQACdKvQYb8jg7vgfohP0QX-tsWG-JI2FfmAwdWej9vE8PYIW-IrV1H0gfuj8xs-My3krCtOYG3_kZH_Kok_Hj1Wrmge-IqKrXffB-LoDV-66lCe-AU1hzI0t-zaYtlQ_-w99v78tJq8RPPX6WwymkdOQhwiVAixQikx0daQNrmKDQ0zwGGuwQpDtpBIRSEzEedZiqmmPDXaJpQTYRL32N2p1xHRerd3VfvG-rxY_AepXmY7
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BioRob49111.2020.9224404
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
Consulter via IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728159075
9781728159072
EISSN 2155-1782
EndPage 739
ExternalDocumentID 9224404
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i203t-a5a035a22a48fde8db53de690a6b80f1defc2aecc2913b97a78eb7d8f4ebeea43
IEDL.DBID RIE
IngestDate Wed Aug 27 02:30:41 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-a5a035a22a48fde8db53de690a6b80f1defc2aecc2913b97a78eb7d8f4ebeea43
PageCount 6
ParticipantIDs ieee_primary_9224404
PublicationCentury 2000
PublicationDate 2020-Nov.
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-Nov.
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
PublicationTitleAbbrev BioRob
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001080000
Score 1.7489245
Snippet Gait abnormalities introduce undesired patterns that limit stability, efficiency, and finally, walker independence. Most of the current algorithms for the...
SourceID ieee
SourceType Publisher
StartPage 734
SubjectTerms Adaptive Systems
Gait Analysis
Hidden Markov Models
Human-Robot Interaction
System Identification
Title Adaptive Gait Phase Segmentation Based on the Time-Varying Identification of the Ankle Dynamics: Technique and Simulation Results
URI https://ieeexplore.ieee.org/document/9224404
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGG-Qk158gPGdHjy6sXXd1nkDFYkJhvAw3Ei7trIAG4Ht4s3_3HYboMaDt-bLtjTdt33P3-8D4FZZFT_g0jWYrUIUzG1mKIlroCB0kAwZk0xXdLuvXmeEX8buuALutlgYIUTefCZMvcxr-TwJM50qawTK3mBN_rnnE6_Aau3yKdr1saxNs44VNFpR0k8Y1l-zigORZZa3_5ijkpuR9iHobjZQdI_MzCxlZvjxi5vxvzs8AvUdYA_2tqboGFREfAIOvnEN1sBnk9Ol_rfBZxqlsDdV5gsOxPuiBB_FsKUkHKqF8gmhhoYYb3SlUVCwQPPKMr0HE5lf0oxncwEfi5H263s43NDBQhpzOIgW5WQw2BfrbJ6u62DUfho-dIxy_oIRIctJDepSy3EpQhQTyQXhzHW4UOE09RixpM2FDBFVOoAC22GBT30imM-JxEozBMXOKajGSSzOAGTSowHmnISEY5dxqnnyQl2Bxkg9iJ6Dmj7MybKg2JiU53jxt_gS7OsXWkACr0A1XWXiWvkGKbvJleILRlW81A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGG8IHtSLDzC-7cGjg9G1bPMGKqICITwMN9KurS7ARmC7ePM_t90GqPHgrfmyNE33bd_z9_sAuFZWxXa5JAarqBAF8wozlIQYyPUsJD3GJNMV3Xan2hzi5xEZ5cDNGgsjhEiaz0RJL5NaPg-9WKfKyq6yN1iTf24RjDFJ0VqbjIp2fkxz1a5juuW6H_ZChvX3rCJBZJayDX5MUkkMSWMPtFdHSPtHJqU4YiXv4xc743_PuA-KG8ge7K6N0QHIieAQ7H5jGyyAzxqnc_13g4_Uj2D3XRkw2Bdvswx-FMC6knCoFsorhBocYrzShcZBwRTPK7MEHwxl8kgtmEwFvE-H2i9v4WBFCAtpwGHfn2WzwWBPLONptCyCYeNhcNc0sgkMho9MKzIooaZFKEIUO5ILhzNicaECalpljikrXEgPUaUFyK1YzLWp7Qhmc0dipRuCYusI5IMwEMcAMlmlLubc8RyOCeNUM-V5ugaNkdqInoCCvszxPCXZGGf3ePq3-ApsNwft1rj11Hk5Azv65aYAwXOQjxaxuFCeQsQuEwX5AlD5wCE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE%2FRAS-EMBS+International+Conference+on+Biomedical+Robotics+and+Biomechatronics&rft.atitle=Adaptive+Gait+Phase+Segmentation+Based+on+the+Time-Varying+Identification+of+the+Ankle+Dynamics%3A+Technique+and+Simulation+Results&rft.au=Perez-Ibarra%2C+Juan+C.&rft.au=Siqueira%2C+Adriano+A.+G.&rft.au=Krebs%2C+Hermano+I.&rft.date=2020-11-01&rft.pub=IEEE&rft.eissn=2155-1782&rft.spage=734&rft.epage=739&rft_id=info:doi/10.1109%2FBioRob49111.2020.9224404&rft.externalDocID=9224404