Quantifying Model Uncertainty in Inverse Problems via Bayesian Deep Gradient Descent

Recent advances in reconstruction methods for inverse problems leverage powerful data-driven models, e.g., deep neural networks. These techniques have demonstrated state-of-the-art performances for several imaging tasks, but they often do not provide uncertainty on the obtained reconstruction. In th...

Full description

Saved in:
Bibliographic Details
Published in2020 25th International Conference on Pattern Recognition (ICPR) pp. 1392 - 1399
Main Authors Barbano, Riccardo, Zhang, Chen, Arridge, Simon, Jin, Bangti
Format Conference Proceeding
LanguageEnglish
Published IEEE 10.01.2021
Subjects
Online AccessGet full text
DOI10.1109/ICPR48806.2021.9412521

Cover

Abstract Recent advances in reconstruction methods for inverse problems leverage powerful data-driven models, e.g., deep neural networks. These techniques have demonstrated state-of-the-art performances for several imaging tasks, but they often do not provide uncertainty on the obtained reconstruction. In this work, we develop a scalable, data-driven, knowledge-aided computational framework to quantify the model uncertainty via Bayesian neural networks. The approach builds on, and extends deep gradient descent, a recently developed greedy iterative training scheme, and recasts it within a probabilistic framework. Scalability is achieved by being hybrid in the architecture: only the last layer of each block is Bayesian, while the others remain deterministic, and by being greedy in training. The framework is showcased on one representative medical imaging modality, viz. computed tomography with either sparse view or limited view data, and exhibits competitive performance with respect to state-of-the-art benchmarks, e.g., total variation, deep gradient descent and learned primal-dual.
AbstractList Recent advances in reconstruction methods for inverse problems leverage powerful data-driven models, e.g., deep neural networks. These techniques have demonstrated state-of-the-art performances for several imaging tasks, but they often do not provide uncertainty on the obtained reconstruction. In this work, we develop a scalable, data-driven, knowledge-aided computational framework to quantify the model uncertainty via Bayesian neural networks. The approach builds on, and extends deep gradient descent, a recently developed greedy iterative training scheme, and recasts it within a probabilistic framework. Scalability is achieved by being hybrid in the architecture: only the last layer of each block is Bayesian, while the others remain deterministic, and by being greedy in training. The framework is showcased on one representative medical imaging modality, viz. computed tomography with either sparse view or limited view data, and exhibits competitive performance with respect to state-of-the-art benchmarks, e.g., total variation, deep gradient descent and learned primal-dual.
Author Zhang, Chen
Jin, Bangti
Arridge, Simon
Barbano, Riccardo
Author_xml – sequence: 1
  givenname: Riccardo
  surname: Barbano
  fullname: Barbano, Riccardo
  email: riccardo.barbano.19@ucl.ac.uk
  organization: University College London,Department of Computer Science,London,UK,WC1E 6BT
– sequence: 2
  givenname: Chen
  surname: Zhang
  fullname: Zhang, Chen
– sequence: 3
  givenname: Simon
  surname: Arridge
  fullname: Arridge, Simon
  organization: University College London,Department of Computer Science,London,UK,WC1E 6BT
– sequence: 4
  givenname: Bangti
  surname: Jin
  fullname: Jin, Bangti
  organization: University College London,Department of Computer Science,London,UK,WC1E 6BT
BookMark eNotj11LwzAYhSPohZv-AkHyB1rzJv1ILrXqLEycsl2PN81bCXTpSOug_97CdvVwOPBwzoJdhz4QY48gUgBhnupq85NpLYpUCgmpyUDmEq7YAkqpYS60umXb7z8Mo28nH375Z--o47vQUBzRh3HiPvA6nCgOxDextx0dBn7yyF9wosFj4K9ER76K6DyFcU5DM_OO3bTYDXR_4ZLt3t-21Uey_lrV1fM68VKoMUHpyOalIVsYlwtZZNY2uhU0L0XXkgGr2wJAZ06pxggLWLqcSq0sktWoluzh7PVEtD9Gf8A47S9H1T9ehU8V
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPR48806.2021.9412521
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728188083
9781728188089
EndPage 1399
ExternalDocumentID 9412521
Genre orig-research
GrantInformation_xml – fundername: EPSRC
  grantid: EP/T000864/1
  funderid: 10.13039/501100000266
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-a2deb579eb69d50264bbc8f0e412adfe91b8f61184d33c90b1a7d5e783baeb8a3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:15 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-a2deb579eb69d50264bbc8f0e412adfe91b8f61184d33c90b1a7d5e783baeb8a3
PageCount 8
ParticipantIDs ieee_primary_9412521
PublicationCentury 2000
PublicationDate 2021-Jan.-10
PublicationDateYYYYMMDD 2021-01-10
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.-10
  day: 10
PublicationDecade 2020
PublicationTitle 2020 25th International Conference on Pattern Recognition (ICPR)
PublicationTitleAbbrev ICPR
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.2631772
Snippet Recent advances in reconstruction methods for inverse problems leverage powerful data-driven models, e.g., deep neural networks. These techniques have...
SourceID ieee
SourceType Publisher
StartPage 1392
SubjectTerms Computational modeling
Inverse problems
Neural networks
Reconstruction algorithms
Scalability
Training
Uncertainty
Title Quantifying Model Uncertainty in Inverse Problems via Bayesian Deep Gradient Descent
URI https://ieeexplore.ieee.org/document/9412521
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61J08qrfgmB4_udtPNZjdX66MKlSot9FYyySwUZVvaXaH-epN0rSgevCUhISEPhpl833yEXCaGcy2lDgx3EmY8gyADoQMlkXHIgGnh2MiDJ9Ef88dJMmmQqy0XBhE9-AxDV_R_-WauKxcq60huzbFjje-kmdhwtWrSL4tk56E3fHHX0QEPuiysO_9QTfFG426PDL6m22BFXsOqhFB__MrE-N_17JP2Nz2PDreG54A0sGiR0XOlHPDH0ZaoUzh7o2Pb0X_4l2s6K6hLqbFc-aFOQ2ZF32eKXqs1Oh4lvUFc0PulR4CVtuazPLXJ-O521OsHtWRCMOtGcRmorkFIUokgpEmsf8UBdJZHaFeqTI6SQZYL61RwE8daRsBUahJMsxgUQqbiQ9Is5gUeEcq5ff4gIFUi4jwByHPG7YvFNEUNUXxMWm5HpotNVoxpvRknfzefkl13Ki54waIz0iyXFZ5bc17ChT_HT5N-opA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4IHvSkBoxve_DoLlu2--hVFEGBoIGEG-l0ZxOiWQjsmuCvty0rRuPBW9u0aTN9TNp-33yEXAcJ50oI5STcSJjxGJwYQuVIgYxDDEyFho3cH4SdMX-cBJMKudlyYRDRgs_QNUn7l5_MVWGeyhqCa3dsWOM7Aec82LC1Stov80Sj2xq-mAVpoAdN5pbVf-imWLfR3if9rw43aJFXt8jBVR-_YjH-d0QHpP5N0KPDres5JBXMamT0XEgD_THEJWo0zt7oWFe0X_75ms4yaoJqLFe2qVGRWdH3maS3co2GSUnvEBf0YWkxYLnO2ThPdTJu349aHacUTXBmTc_PHdlMEIJIIIQiCfQNiwOoOPVQj1QmKQoGcRrqawVPfF8JD5iMkgCj2AeJEEv_iFSzeYbHhHKuDwAIIZKhp80NkKaM6z2LUYQKPP-E1IxFpotNXIxpaYzTv4uvyG5n1O9Ne93B0xnZMzNknjKYd06q-bLAC-3cc7i0c_oJRXil3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+25th+International+Conference+on+Pattern+Recognition+%28ICPR%29&rft.atitle=Quantifying+Model+Uncertainty+in+Inverse+Problems+via+Bayesian+Deep+Gradient+Descent&rft.au=Barbano%2C+Riccardo&rft.au=Zhang%2C+Chen&rft.au=Arridge%2C+Simon&rft.au=Jin%2C+Bangti&rft.date=2021-01-10&rft.pub=IEEE&rft.spage=1392&rft.epage=1399&rft_id=info:doi/10.1109%2FICPR48806.2021.9412521&rft.externalDocID=9412521