Predicton of MRR & Surface Roughness in Wire EDM Machining using Decision Tree and Naive Bayes Algorithm
Manufacturing industries facing problem in optimal selection of process parameters in machining process. Finding optimum process parameters for achieving maximum Material Removal Rate and minimum Surface Roughness is a challenging task and it requires lot of time and energy for experimentation trail...
        Saved in:
      
    
          | Published in | 2021 International Conference on Emerging Smart Computing and Informatics (ESCI) pp. 527 - 532 | 
|---|---|
| Main Authors | , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        05.03.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| DOI | 10.1109/ESCI50559.2021.9396857 | 
Cover
| Abstract | Manufacturing industries facing problem in optimal selection of process parameters in machining process. Finding optimum process parameters for achieving maximum Material Removal Rate and minimum Surface Roughness is a challenging task and it requires lot of time and energy for experimentation trails or experience. It wastes lot of resources and money, sometimes ends up with negative results. To overcome the above issue, this paper presents an algorithm for prediction of Surface Roughness and Material Removal rate using Decision Tree Algorithm and Naive Bayes Algorithm without experimentation. Lot of resources and time can be saved using these machine learning algorithms. In this paper, Material removal rate and Surface roughness of EDM machining of Aluminum composites is predicted using Decision tree algorithm and Naive Bayes algorithm. Then the model can be used to predict the Material Removal Rate and Surface finish of any combination process parameters before machining process. | 
    
|---|---|
| AbstractList | Manufacturing industries facing problem in optimal selection of process parameters in machining process. Finding optimum process parameters for achieving maximum Material Removal Rate and minimum Surface Roughness is a challenging task and it requires lot of time and energy for experimentation trails or experience. It wastes lot of resources and money, sometimes ends up with negative results. To overcome the above issue, this paper presents an algorithm for prediction of Surface Roughness and Material Removal rate using Decision Tree Algorithm and Naive Bayes Algorithm without experimentation. Lot of resources and time can be saved using these machine learning algorithms. In this paper, Material removal rate and Surface roughness of EDM machining of Aluminum composites is predicted using Decision tree algorithm and Naive Bayes algorithm. Then the model can be used to predict the Material Removal Rate and Surface finish of any combination process parameters before machining process. | 
    
| Author | Arunadevi, M L, Yogesh Prakash, C P S  | 
    
| Author_xml | – sequence: 1 givenname: Yogesh surname: L fullname: L, Yogesh email: yoginaidu944@gmail.com organization: Dayananda Sagar College of Engineering,Department of Mechanical Engineering,Bangalore,India – sequence: 2 givenname: M surname: Arunadevi fullname: Arunadevi, M email: arunadevi.dsce@gmail.com organization: Dayananda Sagar College of Engineering,Department of Mechanical Engineering,Bangalore,India – sequence: 3 givenname: C P S surname: Prakash fullname: Prakash, C P S email: drcpsprakash@gmail.com organization: Dayananda Sagar College of Engineering,Department of Mechanical Engineering,Bangalore,India  | 
    
| BookMark | eNotjzFPwzAUhI0EA5T-AiT0JraG2IlreyxtgEotoLSIsXpxXhJLrYOcFKn_niC63A333Ul3wy5964mxex5HnMfmMdvMlzKW0kQiFjwyiZlqqS7Y2CjNldBcS27Sa9Z8BCqd7VsPbQXrPIcH2BxDhZYgb49146nrwHn4coEgW6xhjbZx3vkajt2fLsi6zg39bSAC9CW8ofsheMITdTDb121wfXO4ZVcV7jsan33EPp-z7fx1snp_Wc5nq4kTcdJPDBlBBaLSokxLXehKcxKJ5KhSg7ZUZgiFVSZRA1NUulBWy6JUBcY0RZWM2N3_riOi3XdwBwyn3fl_8gsUNVV4 | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/ESCI50559.2021.9396857 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore digital library IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISBN | 9781728185194 172818519X  | 
    
| EndPage | 532 | 
    
| ExternalDocumentID | 9396857 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IL CBEJK RIE RIL  | 
    
| ID | FETCH-LOGICAL-i203t-9e92ebaa782d4d8b8f81e2351a749acd79baa2c7937a78bf8b7c85bd7ba0e6a73 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Thu Jun 29 18:39:11 EDT 2023 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i203t-9e92ebaa782d4d8b8f81e2351a749acd79baa2c7937a78bf8b7c85bd7ba0e6a73 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | ieee_primary_9396857 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-March-5 | 
    
| PublicationDateYYYYMMDD | 2021-03-05 | 
    
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-March-5 day: 05  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 2021 International Conference on Emerging Smart Computing and Informatics (ESCI) | 
    
| PublicationTitleAbbrev | ESCI | 
    
| PublicationYear | 2021 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| Score | 1.814601 | 
    
| Snippet | Manufacturing industries facing problem in optimal selection of process parameters in machining process. Finding optimum process parameters for achieving... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 527 | 
    
| SubjectTerms | Decision Tree Algorithm Decision trees EDM Machine Learning Machine learning algorithms Machining Naϊve Bayes Algorithm Optimization Prediction algorithms Rough surfaces Surface roughness Surface treatment  | 
    
| Title | Predicton of MRR & Surface Roughness in Wire EDM Machining using Decision Tree and Naive Bayes Algorithm | 
    
| URI | https://ieeexplore.ieee.org/document/9396857 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ08qm_jNO4gn27VN06RH3QdT6Bj7gN1G0qTbUFup7UH_epOuThQP3kLySMIL5PdIfr_3ELp2SYx13MosSRJh-UnsWMKR0pIavRwhWSCYUSNHo2A49x8XZNFAtzstjFKqIp8p2zSrv3yZxaV5KuuEOAwYoXtoj7Jgq9WqRb-uE3b60-6DxnNi5Ceea9fGP6qmVKAxOEDR13JbrsiTXRbCjj9-ZWL8734OUftbngfjHfAcoYZKW2g9zs2fiw7lIEsgmkzgBqZlnnBtPDGleMydBpsUDN8V-r0IoopHqWcAQ35fQa8utwOzXCngqYQR13ch3PN39QZ3z6ss3xTrlzaaD_qz7tCqyyhYG8_BhRWq0FOCcx0LSF8ywRLmKg8Tl1M_5LGkoR70YpMoT9uIhAkaMyIkFdxRAaf4GDXTLFUnCIjERrsrNKYRX7iJoBzjwOFBEDNfEnGKWsZLy9dtpoxl7aCzv7vP0b45qYrRRS5Qs8hLdakhvhBX1dl-AsxuqH8 | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAC1CLe3ICYSJuHnTgj9KECTVX1IXWr7NhpKyBBIRng12OnoQjEwGbZJ9s6S_5O9vfdIXRlkdBRcSs1BIm4gaPQNLgphCEUeplcUJdTrUYOBm5vih9mZFZBNxstjJSyIJ_Jhm4Wf_kiCXP9VNb0Hd-lxNtC2wRjTNZqrVL2a5l-szNu3StEJ1qAYluN0vxH3ZQCNrp7KPhacM0WeWrkGW-EH79yMf53R_uo_i3Qg-EGeg5QRcY1tBym-tdFBXOQRBCMRnAN4zyNmDIe6WI8-laDVQya8QqddgBBwaRUM4Cmvy-gXRbcgUkqJbBYwICp2xDu2Lt8g9vnRZKusuVLHU27nUmrZ5SFFIyVbTqZ4UvflpwxFQ0ILCinEbWk7RCLedhnofB8NWiHOlWesuER5V5ICRceZ6Z0meccomqcxPIIARGOVu9yhWoEcyviHnMc12SuG1IsCD9GNe2l-es6V8a8dNDJ392XaKc3Cfrz_v3g8RTt6lMr-F3kDFWzNJfnCvAzflGc8yfNdKvM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Conference+on+Emerging+Smart+Computing+and+Informatics+%28ESCI%29&rft.atitle=Predicton+of+MRR+%26+Surface+Roughness+in+Wire+EDM+Machining+using+Decision+Tree+and+Naive+Bayes+Algorithm&rft.au=L%2C+Yogesh&rft.au=Arunadevi%2C+M&rft.au=Prakash%2C+C+P+S&rft.date=2021-03-05&rft.pub=IEEE&rft.spage=527&rft.epage=532&rft_id=info:doi/10.1109%2FESCI50559.2021.9396857&rft.externalDocID=9396857 |