Predicton of MRR & Surface Roughness in Wire EDM Machining using Decision Tree and Naive Bayes Algorithm

Manufacturing industries facing problem in optimal selection of process parameters in machining process. Finding optimum process parameters for achieving maximum Material Removal Rate and minimum Surface Roughness is a challenging task and it requires lot of time and energy for experimentation trail...

Full description

Saved in:
Bibliographic Details
Published in2021 International Conference on Emerging Smart Computing and Informatics (ESCI) pp. 527 - 532
Main Authors L, Yogesh, Arunadevi, M, Prakash, C P S
Format Conference Proceeding
LanguageEnglish
Published IEEE 05.03.2021
Subjects
Online AccessGet full text
DOI10.1109/ESCI50559.2021.9396857

Cover

Abstract Manufacturing industries facing problem in optimal selection of process parameters in machining process. Finding optimum process parameters for achieving maximum Material Removal Rate and minimum Surface Roughness is a challenging task and it requires lot of time and energy for experimentation trails or experience. It wastes lot of resources and money, sometimes ends up with negative results. To overcome the above issue, this paper presents an algorithm for prediction of Surface Roughness and Material Removal rate using Decision Tree Algorithm and Naive Bayes Algorithm without experimentation. Lot of resources and time can be saved using these machine learning algorithms. In this paper, Material removal rate and Surface roughness of EDM machining of Aluminum composites is predicted using Decision tree algorithm and Naive Bayes algorithm. Then the model can be used to predict the Material Removal Rate and Surface finish of any combination process parameters before machining process.
AbstractList Manufacturing industries facing problem in optimal selection of process parameters in machining process. Finding optimum process parameters for achieving maximum Material Removal Rate and minimum Surface Roughness is a challenging task and it requires lot of time and energy for experimentation trails or experience. It wastes lot of resources and money, sometimes ends up with negative results. To overcome the above issue, this paper presents an algorithm for prediction of Surface Roughness and Material Removal rate using Decision Tree Algorithm and Naive Bayes Algorithm without experimentation. Lot of resources and time can be saved using these machine learning algorithms. In this paper, Material removal rate and Surface roughness of EDM machining of Aluminum composites is predicted using Decision tree algorithm and Naive Bayes algorithm. Then the model can be used to predict the Material Removal Rate and Surface finish of any combination process parameters before machining process.
Author Arunadevi, M
L, Yogesh
Prakash, C P S
Author_xml – sequence: 1
  givenname: Yogesh
  surname: L
  fullname: L, Yogesh
  email: yoginaidu944@gmail.com
  organization: Dayananda Sagar College of Engineering,Department of Mechanical Engineering,Bangalore,India
– sequence: 2
  givenname: M
  surname: Arunadevi
  fullname: Arunadevi, M
  email: arunadevi.dsce@gmail.com
  organization: Dayananda Sagar College of Engineering,Department of Mechanical Engineering,Bangalore,India
– sequence: 3
  givenname: C P S
  surname: Prakash
  fullname: Prakash, C P S
  email: drcpsprakash@gmail.com
  organization: Dayananda Sagar College of Engineering,Department of Mechanical Engineering,Bangalore,India
BookMark eNotjzFPwzAUhI0EA5T-AiT0JraG2IlreyxtgEotoLSIsXpxXhJLrYOcFKn_niC63A333Ul3wy5964mxex5HnMfmMdvMlzKW0kQiFjwyiZlqqS7Y2CjNldBcS27Sa9Z8BCqd7VsPbQXrPIcH2BxDhZYgb49146nrwHn4coEgW6xhjbZx3vkajt2fLsi6zg39bSAC9CW8ofsheMITdTDb121wfXO4ZVcV7jsan33EPp-z7fx1snp_Wc5nq4kTcdJPDBlBBaLSokxLXehKcxKJ5KhSg7ZUZgiFVSZRA1NUulBWy6JUBcY0RZWM2N3_riOi3XdwBwyn3fl_8gsUNVV4
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ESCI50559.2021.9396857
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore digital library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728185194
172818519X
EndPage 532
ExternalDocumentID 9396857
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-9e92ebaa782d4d8b8f81e2351a749acd79baa2c7937a78bf8b7c85bd7ba0e6a73
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:11 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-9e92ebaa782d4d8b8f81e2351a749acd79baa2c7937a78bf8b7c85bd7ba0e6a73
PageCount 6
ParticipantIDs ieee_primary_9396857
PublicationCentury 2000
PublicationDate 2021-March-5
PublicationDateYYYYMMDD 2021-03-05
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-March-5
  day: 05
PublicationDecade 2020
PublicationTitle 2021 International Conference on Emerging Smart Computing and Informatics (ESCI)
PublicationTitleAbbrev ESCI
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.814601
Snippet Manufacturing industries facing problem in optimal selection of process parameters in machining process. Finding optimum process parameters for achieving...
SourceID ieee
SourceType Publisher
StartPage 527
SubjectTerms Decision Tree Algorithm
Decision trees
EDM
Machine Learning
Machine learning algorithms
Machining
Naϊve Bayes Algorithm
Optimization
Prediction algorithms
Rough surfaces
Surface roughness
Surface treatment
Title Predicton of MRR & Surface Roughness in Wire EDM Machining using Decision Tree and Naive Bayes Algorithm
URI https://ieeexplore.ieee.org/document/9396857
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ08qm_jNO4gn27VN06RH3QdT6Bj7gN1G0qTbUFup7UH_epOuThQP3kLySMIL5PdIfr_3ELp2SYx13MosSRJh-UnsWMKR0pIavRwhWSCYUSNHo2A49x8XZNFAtzstjFKqIp8p2zSrv3yZxaV5KuuEOAwYoXtoj7Jgq9WqRb-uE3b60-6DxnNi5Ceea9fGP6qmVKAxOEDR13JbrsiTXRbCjj9-ZWL8734OUftbngfjHfAcoYZKW2g9zs2fiw7lIEsgmkzgBqZlnnBtPDGleMydBpsUDN8V-r0IoopHqWcAQ35fQa8utwOzXCngqYQR13ch3PN39QZ3z6ss3xTrlzaaD_qz7tCqyyhYG8_BhRWq0FOCcx0LSF8ywRLmKg8Tl1M_5LGkoR70YpMoT9uIhAkaMyIkFdxRAaf4GDXTLFUnCIjERrsrNKYRX7iJoBzjwOFBEDNfEnGKWsZLy9dtpoxl7aCzv7vP0b45qYrRRS5Qs8hLdakhvhBX1dl-AsxuqH8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAC1CLe3ICYSJuHnTgj9KECTVX1IXWr7NhpKyBBIRng12OnoQjEwGbZJ9s6S_5O9vfdIXRlkdBRcSs1BIm4gaPQNLgphCEUeplcUJdTrUYOBm5vih9mZFZBNxstjJSyIJ_Jhm4Wf_kiCXP9VNb0Hd-lxNtC2wRjTNZqrVL2a5l-szNu3StEJ1qAYluN0vxH3ZQCNrp7KPhacM0WeWrkGW-EH79yMf53R_uo_i3Qg-EGeg5QRcY1tBym-tdFBXOQRBCMRnAN4zyNmDIe6WI8-laDVQya8QqddgBBwaRUM4Cmvy-gXRbcgUkqJbBYwICp2xDu2Lt8g9vnRZKusuVLHU27nUmrZ5SFFIyVbTqZ4UvflpwxFQ0ILCinEbWk7RCLedhnofB8NWiHOlWesuER5V5ICRceZ6Z0meccomqcxPIIARGOVu9yhWoEcyviHnMc12SuG1IsCD9GNe2l-es6V8a8dNDJ392XaKc3Cfrz_v3g8RTt6lMr-F3kDFWzNJfnCvAzflGc8yfNdKvM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Conference+on+Emerging+Smart+Computing+and+Informatics+%28ESCI%29&rft.atitle=Predicton+of+MRR+%26+Surface+Roughness+in+Wire+EDM+Machining+using+Decision+Tree+and+Naive+Bayes+Algorithm&rft.au=L%2C+Yogesh&rft.au=Arunadevi%2C+M&rft.au=Prakash%2C+C+P+S&rft.date=2021-03-05&rft.pub=IEEE&rft.spage=527&rft.epage=532&rft_id=info:doi/10.1109%2FESCI50559.2021.9396857&rft.externalDocID=9396857