A Multi-Task Algorithm for Autonomous Underwater Vehicles 3D path planning

When considering multiple Autonomous Underwater Vehicles (AUV) path planning simultaneously, problems can be seen as multi-task optimization (MTO) problems. The Multifactorial evolutionary algorithm (MFEA) has many obvious advantages in handling multi-task optimization, but it is rarely used in thre...

Full description

Saved in:
Bibliographic Details
Published in2020 3rd International Conference on Unmanned Systems (ICUS) pp. 972 - 977
Main Authors Hu, Hao, Zhou, Yongjian, Wang, Tonghao, Peng, Xingguang
Format Conference Proceeding
LanguageEnglish
Published IEEE 27.11.2020
Subjects
Online AccessGet full text
DOI10.1109/ICUS50048.2020.9274809

Cover

Abstract When considering multiple Autonomous Underwater Vehicles (AUV) path planning simultaneously, problems can be seen as multi-task optimization (MTO) problems. The Multifactorial evolutionary algorithm (MFEA) has many obvious advantages in handling multi-task optimization, but it is rarely used in three-dimensional (3D) path planning. Therefore, using the individual gradient based on MFEA (MFEA-IG), this paper solves the global path planning problem of AUV in the 3D environment. We construct a 3D space model, effectively reducing the computational complexity from 3D to two-dimensional (2D). Besides, we also consider the impact of ocean currents on path planning. In this paper, both MFEA-IG and MFEA are used for path planning, and time cost is selected as their optimization target. Experimental results show that the two algorithms can be effectively used for AUV 3D path planning, and MFEA-IG has a better result than MFEA.
AbstractList When considering multiple Autonomous Underwater Vehicles (AUV) path planning simultaneously, problems can be seen as multi-task optimization (MTO) problems. The Multifactorial evolutionary algorithm (MFEA) has many obvious advantages in handling multi-task optimization, but it is rarely used in three-dimensional (3D) path planning. Therefore, using the individual gradient based on MFEA (MFEA-IG), this paper solves the global path planning problem of AUV in the 3D environment. We construct a 3D space model, effectively reducing the computational complexity from 3D to two-dimensional (2D). Besides, we also consider the impact of ocean currents on path planning. In this paper, both MFEA-IG and MFEA are used for path planning, and time cost is selected as their optimization target. Experimental results show that the two algorithms can be effectively used for AUV 3D path planning, and MFEA-IG has a better result than MFEA.
Author Zhou, Yongjian
Peng, Xingguang
Hu, Hao
Wang, Tonghao
Author_xml – sequence: 1
  givenname: Hao
  surname: Hu
  fullname: Hu, Hao
  email: haohu2019@gmail.com
  organization: Northwestern Polytechnical University,School of Marine Science and Technology,Xi'an,China
– sequence: 2
  givenname: Yongjian
  surname: Zhou
  fullname: Zhou, Yongjian
  email: yjzhou416@gmail.com
  organization: Northwestern Polytechnical University,School of Marine Science and Technology,Xi'an,China
– sequence: 3
  givenname: Tonghao
  surname: Wang
  fullname: Wang, Tonghao
  email: neilwth@hotmail.com
  organization: Northwestern Polytechnical University,School of Marine Science and Technology,Xi'an,China
– sequence: 4
  givenname: Xingguang
  surname: Peng
  fullname: Peng, Xingguang
  email: pxg@nwpu.edu.cn
  organization: Northwestern Polytechnical University,School of Marine Science and Technology,Xi'an,China
BookMark eNotz01PwyAcgHFM9OCmn8DE8AVa_1AY5djUt5kZD65eFyiwEltoKIvx23twp-f2S54VugwxWITuCZSEgHzYtt0nB2B1SYFCKalgNcgLtCKC1qQGyuk1emvw-2nMvtir5Rs34zEmn4cJu5hwc8oxxCmeFtwFY9OPyjbhLzv4frQLrh7xrPKA51GF4MPxBl05NS729tw16p6f9u1rsft42bbNrvAUqlzIXoMwwNSGUkY1aG6M6lkttbPMaFBMOUmNcxvuhJBgei657p2SXBhCTbVGd_-ut9Ye5uQnlX4P573qD43GS0Y
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICUS50048.2020.9274809
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728180252
9781728180250
EndPage 977
ExternalDocumentID 9274809
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-9cb07d04a62242b0b5ddac489bfe4db0a4af92dff65f7790dc595bcfa957d12d3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:27 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-9cb07d04a62242b0b5ddac489bfe4db0a4af92dff65f7790dc595bcfa957d12d3
PageCount 6
ParticipantIDs ieee_primary_9274809
PublicationCentury 2000
PublicationDate 2020-Nov.-27
PublicationDateYYYYMMDD 2020-11-27
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-Nov.-27
  day: 27
PublicationDecade 2020
PublicationTitle 2020 3rd International Conference on Unmanned Systems (ICUS)
PublicationTitleAbbrev ICUS
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8107082
Snippet When considering multiple Autonomous Underwater Vehicles (AUV) path planning simultaneously, problems can be seen as multi-task optimization (MTO) problems....
SourceID ieee
SourceType Publisher
StartPage 972
SubjectTerms 3D model
Genetic algorithms
MFEA
multi-task optimization
Oceans
Optimization
Path planning
Solid modeling
Task analysis
Three-dimensional displays
Title A Multi-Task Algorithm for Autonomous Underwater Vehicles 3D path planning
URI https://ieeexplore.ieee.org/document/9274809
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NS8MwGMbD3MmTyiZ-k4NH0yVt0jbHMR1zMBHcZLeRTyfTdcwWwb_eJKsTxYO3UgotSeF9n_b9PQ8Al5ZohhPv_GiwRTQnBHmAEyluBFHS9QiBrRrdpYMJHU7ZtAGutiyMMSYMn5nIH4Z_-bpQlf9U1uFOQuWe1tvJ8nTDatXQL8G8c9ubPDD_RjrVF-OovvhHakooGv09MPq63WZWZBFVpYzUxy8nxv8-zz5of-N58H5beA5AwyxbYNiFAaZFY_G2gN2Xp8LJ_vkrdE0p7FalZxecyIch5-jdNZhr-GjmYSYOJtfQBxPDVR1g1AaT_s24N0B1UAJ6jnFSIq4kzjSmInUFOZZYMq2FojmX1lAtsaDC8lhbmzLr_QW1YpxJZQVnmSaxTg5Bc1kszRGANHcahfgynnMqlRbYpmlmXdfijfOFOAYtvw6z1cYLY1Yvwcnfp0_Brt8Lz-7F2RloluvKnLsiXsqLsHufndudyQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NT8IwGMYbogc9qQHjtz14tKPb2m09EpQAAjERDDfSTzEoENxi4l9vWyZG48HbsizZ0i5532d7f88DwJUJFcWxc37U2CCShSFyACeSTPNQCtsjeLaqP0jaI9Id03EFXG9YGK21Hz7TgTv0__LVQhbuU1mdWQmVOVpvmxJC6JrWKrHfELN6pzl6oO6dtLovwkF5-Y_cFF82Wnug_3XD9bTILChyEciPX16M_32ifVD7BvTg_ab0HICKnldBtwE9TouG_G0GGy9PCyv8p6_QtqWwUeSOXrAyH_qko3fbYq7go576qTgY30AXTQyXZYRRDYxat8NmG5VRCeg5wnGOmBQ4VZjwxJbkSGBBleKSZEwYTZTAnHDDImVMQo1zGFSSMiqk4YymKoxUfAi25ou5PgKQZFalhK6QZ4wIqTg2SZIa27c463zOj0HVrcNkuXbDmJRLcPL36Uuw0x72e5NeZ3B3CnbdvjiSL0rPwFa-KvS5Lem5uPA7-QkQ36EW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+3rd+International+Conference+on+Unmanned+Systems+%28ICUS%29&rft.atitle=A+Multi-Task+Algorithm+for+Autonomous+Underwater+Vehicles+3D+path+planning&rft.au=Hu%2C+Hao&rft.au=Zhou%2C+Yongjian&rft.au=Wang%2C+Tonghao&rft.au=Peng%2C+Xingguang&rft.date=2020-11-27&rft.pub=IEEE&rft.spage=972&rft.epage=977&rft_id=info:doi/10.1109%2FICUS50048.2020.9274809&rft.externalDocID=9274809