On Robust Variance Filtering and Change of Variance Detection
This paper studies the variance filtering and change of variance (CoV) detection under multiple change points in time series signal. In real world scenarios, CoV detection can be challenging since the time series signal may contain not only outliers but also abrupt trend changes. To deal with these...
Saved in:
| Published in | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 3012 - 3016 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.05.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2379-190X |
| DOI | 10.1109/ICASSP40776.2020.9053548 |
Cover
| Abstract | This paper studies the variance filtering and change of variance (CoV) detection under multiple change points in time series signal. In real world scenarios, CoV detection can be challenging since the time series signal may contain not only outliers but also abrupt trend changes. To deal with these challenges, we propose a robust CoV detection algorithm based on robust statistics and sparse regularizations. Specifically, we adopt Huber loss to suppress outliers both in trend removal and variance filtering, utilize sparse regu-larizations to capture trend and variance changes, and obtain accurate change points locations by using breakpoint detection for centered cumulative sum of the estimated variance. We compare our proposed robust CoV algorithm with other state-of-the-art CoV detection algorithms on both synthetic and public datasets. The experiments demonstrate that our algorithm outperforms existing methods. |
|---|---|
| AbstractList | This paper studies the variance filtering and change of variance (CoV) detection under multiple change points in time series signal. In real world scenarios, CoV detection can be challenging since the time series signal may contain not only outliers but also abrupt trend changes. To deal with these challenges, we propose a robust CoV detection algorithm based on robust statistics and sparse regularizations. Specifically, we adopt Huber loss to suppress outliers both in trend removal and variance filtering, utilize sparse regu-larizations to capture trend and variance changes, and obtain accurate change points locations by using breakpoint detection for centered cumulative sum of the estimated variance. We compare our proposed robust CoV algorithm with other state-of-the-art CoV detection algorithms on both synthetic and public datasets. The experiments demonstrate that our algorithm outperforms existing methods. |
| Author | Sun, Liang Wen, Qingsong Ma, Zhengzhi |
| Author_xml | – sequence: 1 givenname: Qingsong surname: Wen fullname: Wen, Qingsong organization: Alibaba Group,Machine Intelligence Technology,Bellevue,USA – sequence: 2 givenname: Zhengzhi surname: Ma fullname: Ma, Zhengzhi organization: University of Southern California,Department of Physics and Astronomy,Los Angeles,USA – sequence: 3 givenname: Liang surname: Sun fullname: Sun, Liang organization: Alibaba Group,Machine Intelligence Technology,Bellevue,USA |
| BookMark | eNpFj8FKAzEURaMo2NZ-gZv8wNSXvGSSt3Aho1WhULEq7kpm-lIjNSMz46J_r2DB1d0cDueOxUluMwshFcyUArp8qK5Xq0cDzpUzDRpmBBat8UdiSs4rCwRlicoei5FGR4UieDsT477_AADvjB-Jq2WWT2393Q_yNXQp5IblPO0G7lLeypA3snoPecuyjf_ADQ_cDKnN5-I0hl3P08NOxMv89rm6LxbLu9-4RZE04FCQaTCUwYeonDENlegb7cBwVIzWWkfaa00RYkQba4VgAaF22jDZDXmciIs_b2Lm9VeXPkO3Xx_e4g_UUkoM |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICASSP40776.2020.9053548 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781509066315 1509066314 |
| EISSN | 2379-190X |
| EndPage | 3016 |
| ExternalDocumentID | 9053548 |
| Genre | orig-research |
| GroupedDBID | 23M 29P 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i203t-94c3a6a8af1744c9638c2704ef1e35557928229f0ff35fb1305030b724e95d983 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:46:38 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-94c3a6a8af1744c9638c2704ef1e35557928229f0ff35fb1305030b724e95d983 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9053548 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-May |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-May |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) |
| PublicationTitleAbbrev | ICASSP |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0008748 |
| Score | 2.1361594 |
| Snippet | This paper studies the variance filtering and change of variance (CoV) detection under multiple change points in time series signal. In real world scenarios,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 3012 |
| SubjectTerms | change of variance change point detection Detection algorithms Filtering Huber loss robust method Signal processing Signal processing algorithms Speech processing Time series Time series analysis |
| Title | On Robust Variance Filtering and Change of Variance Detection |
| URI | https://ieeexplore.ieee.org/document/9053548 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8MgFH_ZdtKLH5vxOxw8SoeUQnvwYKbLNJkuzpndFiiQLEtao-3Fv15o96HGg7eGQiC8wI8Hv_d7ABcOUbQmxGDJtcVM0Ag7GBZYUenl1ZQgVTqg4SMfTNjDNJo24HIdC2OMqchnJvCf1Vu-ztPSX5V1Ey9GwuImNEXM61it9a4bCxavmDok6d73bsbjEfNiNc4JpCRYtv2RRKXCkP4ODFe919SRRVAWKkg_fwkz_nd4u9DZROuh0RqH9qBhsn3Y_iY02Ibrpww956r8KNCrc469pVF_7h_K3W8kM43qKAOU202FW1NUPK2sA5P-3UtvgJeJE_CckrDACUtDyWUsrfM3WOrXWEoFYcZeGXe-iETiyaOJJdaGkVUOxiK31pWgzCSRTuLwAFpZnplDQIw6f4RLIWnKmBbGnSYllZZbrrgWih5B20_E7K3Wxpgt5-D47-IT2PLGqAmDp9Aq3ktz5kC9UOeVNb8A7FyfBQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8MgFH-Z86Be_NiM33LwaDekUNqDBzNdNt3m4jbjbYECyWLSGm0v_vVCuw81Hrw1FALhBX48-L3fA7iwiKIUxtoTgTIe5YR5Foa5J4lw8mqS4yIdUH8QdCb0_oW9VOByGQujtS7IZ7rhPou3fJXGubsqa0ZOjISGa7DOKKWsjNZa7rshp-GCq4OjZrd1MxoNqZOrsW4gwY156x9pVAoUaW9Df9F_SR55beSZbMSfv6QZ_zvAHaiv4vXQcIlEu1DRyR5sfZMarMH1Y4KeUpl_ZOjZusfO1qg9c0_l9jcSiUJlnAFKzarCrc4KplZSh0n7btzqePPUCd6MYD_zIhr7IhChMNbjoLFbZTHhmGpzpe0Jg_HI0Ucjg43xmZEWyJhd7ZITqiOmotDfh2qSJvoAECXWIwkEFySmVHFtz5OCCBOYQAaKS3IINTcR07dSHWM6n4Ojv4vPYaMz7vemve7g4Rg2nWFK-uAJVLP3XJ9aiM_kWWHZL3R4olI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=On+Robust+Variance+Filtering+and+Change+of+Variance+Detection&rft.au=Wen%2C+Qingsong&rft.au=Ma%2C+Zhengzhi&rft.au=Sun%2C+Liang&rft.date=2020-05-01&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=3012&rft.epage=3016&rft_id=info:doi/10.1109%2FICASSP40776.2020.9053548&rft.externalDocID=9053548 |