Post Training Uncertainty Calibration Of Deep Networks For Medical Image Segmentation

Neural networks for automated image segmentation are typically trained to achieve maximum accuracy, while less attention has been given to the calibration of their confidence scores. However, well-calibrated confidence scores provide valuable information towards the user. We investigate several post...

Full description

Saved in:
Bibliographic Details
Published inProceedings (International Symposium on Biomedical Imaging) pp. 1052 - 1056
Main Authors Rousseau, Axel-Jan, Becker, Thijs, Bertels, Jeroen, Blaschko, Matthew B., Valkenborg, Dirk
Format Conference Proceeding
LanguageEnglish
Published IEEE 13.04.2021
Subjects
Online AccessGet full text
ISSN1945-8452
DOI10.1109/ISBI48211.2021.9434131

Cover

Abstract Neural networks for automated image segmentation are typically trained to achieve maximum accuracy, while less attention has been given to the calibration of their confidence scores. However, well-calibrated confidence scores provide valuable information towards the user. We investigate several post hoc calibration methods that are straightforward to implement, some of which are novel. They are compared to Monte Carlo (MC) dropout and are applied to neural networks trained with cross-entropy (CE) and soft Dice (SD) losses on BraTS 2018 and ISLES 2018. Surprisingly, models trained on SD loss are not necessarily less calibrated than those trained on CE loss. In all cases, at least one post hoc method improves the calibration. There is limited consistency across the results, so we can't conclude on one method being superior. In all cases, post hoc calibration is competitive with MC dropout. Although average calibration improves compared to the base model, subject-level variance of the calibration remains similar.
AbstractList Neural networks for automated image segmentation are typically trained to achieve maximum accuracy, while less attention has been given to the calibration of their confidence scores. However, well-calibrated confidence scores provide valuable information towards the user. We investigate several post hoc calibration methods that are straightforward to implement, some of which are novel. They are compared to Monte Carlo (MC) dropout and are applied to neural networks trained with cross-entropy (CE) and soft Dice (SD) losses on BraTS 2018 and ISLES 2018. Surprisingly, models trained on SD loss are not necessarily less calibrated than those trained on CE loss. In all cases, at least one post hoc method improves the calibration. There is limited consistency across the results, so we can't conclude on one method being superior. In all cases, post hoc calibration is competitive with MC dropout. Although average calibration improves compared to the base model, subject-level variance of the calibration remains similar.
Author Bertels, Jeroen
Valkenborg, Dirk
Blaschko, Matthew B.
Rousseau, Axel-Jan
Becker, Thijs
Author_xml – sequence: 1
  givenname: Axel-Jan
  surname: Rousseau
  fullname: Rousseau, Axel-Jan
  organization: I-Biostat, Data Science Institute, Hasselt University,Belgium
– sequence: 2
  givenname: Thijs
  surname: Becker
  fullname: Becker, Thijs
  organization: I-Biostat, Data Science Institute, Hasselt University,Belgium
– sequence: 3
  givenname: Jeroen
  surname: Bertels
  fullname: Bertels, Jeroen
  organization: Processing Speech and Images,Department of Electrical Engineering,KU Leuven,Belgium
– sequence: 4
  givenname: Matthew B.
  surname: Blaschko
  fullname: Blaschko, Matthew B.
  organization: Processing Speech and Images,Department of Electrical Engineering,KU Leuven,Belgium
– sequence: 5
  givenname: Dirk
  surname: Valkenborg
  fullname: Valkenborg, Dirk
  organization: I-Biostat, Data Science Institute, Hasselt University,Belgium
BookMark eNotkFFLwzAUhaMouM39AkHyBzpzk9smfdTptDCdsO15JO3tiG7pSAOyf-_QnZfDB4fv4QzZVegCMXYPYgIgyodq-VShkQATKSRMSlQICi7YEIoiR5BYwCUbQIl5ZjCXN2zc91_iFI2oBA7Y-rPrE19F64MPW74ONcV0gnTkU7vzLtrku8AXLX8mOvAPSj9d_O75rIv8nRpf2x2v9nZLfEnbPYX0t79l163d9TQ-94itZy-r6Vs2X7xW08d55qVQKStlK1xOTe10Y5wxhDVqXTrlanBGCltS20iLhFhgW2htjMulMI1CbY2zasTu_r2eiDaH6Pc2HjfnF9QvSmdT6g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISBI48211.2021.9434131
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665412461
9781665412469
EISSN 1945-8452
EndPage 1056
ExternalDocumentID 9434131
Genre orig-research
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i203t-92f0b5edcb7d8b88e4c4779b3bc1b820a9efd2a4e4464f67788b5208d347a8ba3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:27:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-92f0b5edcb7d8b88e4c4779b3bc1b820a9efd2a4e4464f67788b5208d347a8ba3
PageCount 5
ParticipantIDs ieee_primary_9434131
PublicationCentury 2000
PublicationDate 2021-April-13
PublicationDateYYYYMMDD 2021-04-13
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-April-13
  day: 13
PublicationDecade 2020
PublicationTitle Proceedings (International Symposium on Biomedical Imaging)
PublicationTitleAbbrev ISBI
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
Score 2.3056815
Snippet Neural networks for automated image segmentation are typically trained to achieve maximum accuracy, while less attention has been given to the calibration of...
SourceID ieee
SourceType Publisher
StartPage 1052
SubjectTerms Calibration
confidence calibration
deep learning
Image segmentation
Measurement
Medical image segmentation
Monte Carlo methods
Neural networks
Training
Uncertainty
uncertainty estimation
Title Post Training Uncertainty Calibration Of Deep Networks For Medical Image Segmentation
URI https://ieeexplore.ieee.org/document/9434131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKT3BhaRG7fOBI0sSZJM6VpaJIFKQ2Um-VlzFCqGlV0gN8PXYSyiIO3CxLli175PHzzHtDyHmGOlUmMp4OReBBwoQnZAIeF0xloLQFRZXa5zC5zeFuEk9a5GLNhUHEKvkMfdesYvl6rlbuq6zntMxCR5resGZWc7XW_ynWFYKF5g0JOAyy3mB0OQBuAY5FgSz0m8E_qqhUTqS_Te4_p69zR178VSl99f5LmfG_69sh3S-6Hn1cO6Jd0sJij2x9UxrskNwV5aXjph4Eze2QKhWgfKOOnSVrO6APhl4jLuiwTg5_pf35kjaxHDqY2buHjvBp1vCVii7J-zfjq1uvqajgPbMgKr2MmUDGqJVMNZecIyhI00xGUoXSvgVEhkYzAWhBIhinLcdlzAKuI0gFlyLaJ-1iXuABoZAohcrYOyrhwCHOIADJMI1MmBjF4ZB03AZNF7VoxrTZm6O_u4_JpjskF6YJoxPSLpcrPLXevpRn1TF_AMUMqkA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUqOAAXlhax4wNHkmaZJM6VpWqgLUhtpN4q2xkjhJpWJT3A12MnoSziwM2yZMkaWx6_mXlvCLmIMYuk8pWVudyxIPS4xUUIFuOejEFmGhSVap-DsJvC3TgYN8jliguDiGXxGdpmWObys5lcmlBZ22iZuYY0vR5oVMEqttYqoqKdIWhwXtOAXSduJ8OrBJiGOBoHeq5dL__RR6V0I51t0v_cQFU98mIvC2HL91_ajP_d4Q5pfRH26OPKFe2SBuZ7ZOub1mCTpKYtLx3VHSFoqpeUxQDFGzX8LFHdBPqg6A3inA6q8vBX2pktaJ3NoclUvz50iE_TmrGUt0jauR1dd626p4L17Dl-YcWeckSAmRRRxgRjCBKiKBa-kK7QvwEeo8o8DqhhIiijLsdE4Dks8yHiTHB_n6zlsxwPCIVQSpRKv1IhAwZBDA4IDyNfuaGSDA5J0xhoMq9kMya1bY7-nj4nG91RvzfpJYP7Y7JpDswkbVz_hKwViyWeat9fiLPyyD8A6ymtkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Post+Training+Uncertainty+Calibration+Of+Deep+Networks+For+Medical+Image+Segmentation&rft.au=Rousseau%2C+Axel-Jan&rft.au=Becker%2C+Thijs&rft.au=Bertels%2C+Jeroen&rft.au=Blaschko%2C+Matthew+B.&rft.date=2021-04-13&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1052&rft.epage=1056&rft_id=info:doi/10.1109%2FISBI48211.2021.9434131&rft.externalDocID=9434131