Generalizing Imaging Through Scattering Media With Uncertainty Estimates

Imaging through scattering media is challenging: object features are hidden under highly-scattered photons. Conventional methods that characterize scattering properties, such as the media input-output transmission matrix, are susceptible to environmental disturbance that is not ideal for many imagin...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE Winter Conference on Applications of Computer Vision Workshops. Online) pp. 760 - 766
Main Authors Cochrane, Jared M., Beveridge, Matthew, Drori, Iddo
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.01.2022
Subjects
Online AccessGet full text
ISSN2690-621X
DOI10.1109/WACVW54805.2022.00083

Cover

Abstract Imaging through scattering media is challenging: object features are hidden under highly-scattered photons. Conventional methods that characterize scattering properties, such as the media input-output transmission matrix, are susceptible to environmental disturbance that is not ideal for many imaging scenarios, especially in biomedical imaging. Learning from examples is ideal for imaging in highly scattered regimes because it is adaptable and accurate even when the microstructures of the scattering media change. In current approaches, network output on unseen scattering media contain artifacts that inhibit meaningful object recognition. We present a network architecture that is able to generate high quality images over a range of different scattering media and image sizes with minimal artifacts. Our network learns the statistical information within highly scattered speckle intensity patterns. This allows us to compute an accurate mapping from different speckle patterns to their corresponding objects given scattering media with varying microstructures. Our network demonstrates superior performance compared to similar models, especially when trained on a single scattering medium and then tested on unseen scattering media. We estimate the uncertainty of our approach and use the available data efficiently, increasing the generalizability of predicting objects from unseen scattering media with multiple different diffusers.
AbstractList Imaging through scattering media is challenging: object features are hidden under highly-scattered photons. Conventional methods that characterize scattering properties, such as the media input-output transmission matrix, are susceptible to environmental disturbance that is not ideal for many imaging scenarios, especially in biomedical imaging. Learning from examples is ideal for imaging in highly scattered regimes because it is adaptable and accurate even when the microstructures of the scattering media change. In current approaches, network output on unseen scattering media contain artifacts that inhibit meaningful object recognition. We present a network architecture that is able to generate high quality images over a range of different scattering media and image sizes with minimal artifacts. Our network learns the statistical information within highly scattered speckle intensity patterns. This allows us to compute an accurate mapping from different speckle patterns to their corresponding objects given scattering media with varying microstructures. Our network demonstrates superior performance compared to similar models, especially when trained on a single scattering medium and then tested on unseen scattering media. We estimate the uncertainty of our approach and use the available data efficiently, increasing the generalizability of predicting objects from unseen scattering media with multiple different diffusers.
Author Beveridge, Matthew
Drori, Iddo
Cochrane, Jared M.
Author_xml – sequence: 1
  givenname: Jared M.
  surname: Cochrane
  fullname: Cochrane, Jared M.
  email: jaredmco@mit.edu
  organization: Massachusetts Institute of Technology 77 Massachusetts Ave, Cambridge,Department of Electrical Engineering and Computer Science,MA,02139
– sequence: 2
  givenname: Matthew
  surname: Beveridge
  fullname: Beveridge, Matthew
  email: mattbev@mit.edu
  organization: Massachusetts Institute of Technology 77 Massachusetts Ave, Cambridge,Department of Electrical Engineering and Computer Science,MA,02139
– sequence: 3
  givenname: Iddo
  surname: Drori
  fullname: Drori, Iddo
  email: idrori@mit.edu
  organization: Massachusetts Institute of Technology 77 Massachusetts Ave, Cambridge,Department of Electrical Engineering and Computer Science,MA,02139
BookMark eNotjs1OwkAUhUejiYg8gTHpC7Te-bnTmSUhCCQYF4J1R4b2th0DxUzHBTy9EF19ycnJd849u-kOHTH2xCHjHOxzMZ58FKgMYCZAiAwAjLxiI5sbrjUqNELhNRsIbSHVgn_esVHff51rUoACrgdsPqOOgtv5k--aZLF3zYWrNhx-mjZ5L12MFC7RK1XeJYWPbbLuSgrR-S4ek2kf_d5F6h_Ybe12PY3-OWTrl-lqMk-Xb7PFZLxMvQAZU1OLmkqVVwLPLxTVRArt1igyGkiorbDaVk5tNVYVYlXX3DktSwloueEoh-zxz-uJaPMdzuvhuLE55MiN_AWSE1Af
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WACVW54805.2022.00083
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781665458245
1665458240
EISSN 2690-621X
EndPage 766
ExternalDocumentID 9707518
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-8f2fec47d250034efee459b84e860e24b2969da4b65dd55dff1aa63c305918153
IEDL.DBID RIE
IngestDate Wed Aug 27 02:49:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-8f2fec47d250034efee459b84e860e24b2969da4b65dd55dff1aa63c305918153
PageCount 7
ParticipantIDs ieee_primary_9707518
PublicationCentury 2000
PublicationDate 2022-Jan.
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Winter Conference on Applications of Computer Vision Workshops. Online)
PublicationTitleAbbrev WACVW
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204016
Score 2.1871135
Snippet Imaging through scattering media is challenging: object features are hidden under highly-scattered photons. Conventional methods that characterize scattering...
SourceID ieee
SourceType Publisher
StartPage 760
SubjectTerms Computer architecture
Imaging
Media
Scattering
Speckle
Training
Uncertainty
Title Generalizing Imaging Through Scattering Media With Uncertainty Estimates
URI https://ieeexplore.ieee.org/document/9707518
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH8BTp5QwfidHjw66Nqu646GQNAE4wGEG9m610gMH9FxkL_etptojAdvy0uXLW3X99v7-P0AbnSoHHRQgXFCgIKaOEhUqIPU-mapuTHSuHjH6FEOJ-JhFs1qcLvvhUFEX3yGHXfpc_n5Wm9dqKybxNRlCepQt9us7NXax1M4s9sxlFWTTkiT7vSu9zx1dGaR_Q1knpfTkQP-EFHxPmTQhNHX08vSkdfOtsg6eveLmPG_r3cI7e9uPfK090NHUMPVMTQreEmqj_e9BcOKYnqxs8PI_dLrE5FxKdRjx3mmTWdyyZuUTBfFC5nYW33NQPFB-vY0WDpo2obJoD_uDYNKSCFYMMqLQBlmUIs4t3iHcoEGUURJpgQqSZGJjCUyyVORySjPoyg3JkxTybU9CxKLACJ-Ao3VeoWnQKS1UKozrmItlHZs_FQrJtDiIiExO4OWm5j5puTKmFdzcv63-QIO3NKUIY1LaBRvW7yyTr7Irv3qfgJ9x6YC
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGH6DeNATKhi_7cGjg279WHc0BDIUiAcQbmTr2kgMYHQc5NfbdhON8eBtedNlS7v1ffp-PA_AjfSFhQ7C01YIkGIdepHwpZcY38wl0ZprG-8YDHk8pvdTNq3A7bYXRinlis9U0166XH62kmsbKmtFIbZZgh3YZeZUIYpurW1EhQTmg_R52abj46g1uWs_TSyhGTMHwcAxc1p6wB8yKs6LdGsw-Hp-UTzy0lznaVNuflEz_vcFD6Dx3a-HHree6BAqankEtRJgovL3fa9DXJJMzzdmGOotnEIRGhVSPWac49q0Jpu-SdBknj-jsbnVVQ3kH6hj9oOFBacNGHc7o3bslVIK3jzAJPeEDrSSNMwM4sGEKq0UZVEqqBIcq4CmQcSjLKEpZ1nGWKa1nyScSLMbRAYDMHIM1eVqqU4AcWPBWKZEhJIKafn4sRQBVQYZUa7SU6jbiZm9FmwZs3JOzv42X8NePBr0Z_3e8OEc9u0yFQGOC6jmb2t1aVx-nl65lf4Ea8WpVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Winter+Conference+on+Applications+of+Computer+Vision+Workshops.+Online%29&rft.atitle=Generalizing+Imaging+Through+Scattering+Media+With+Uncertainty+Estimates&rft.au=Cochrane%2C+Jared+M.&rft.au=Beveridge%2C+Matthew&rft.au=Drori%2C+Iddo&rft.date=2022-01-01&rft.pub=IEEE&rft.eissn=2690-621X&rft.spage=760&rft.epage=766&rft_id=info:doi/10.1109%2FWACVW54805.2022.00083&rft.externalDocID=9707518