An Interpretable Generative Model for Handwritten Digits Synthesis

An interpretable generative model for handwritten digits synthesis is proposed in this work. Modern image generative models such as the variational autoencoder (VAE) are trained by backpropagation (BP). The training process is complex, and its underlying mechanism is not transparent. Here, we presen...

Full description

Saved in:
Bibliographic Details
Published inProceedings - International Conference on Image Processing pp. 1910 - 1914
Main Authors Zhu, Yao, Suri, Saksham, Kulkarni, Pranav, Chen, Yueru, Duan, Jiali, Kuo, C.-C. Jay
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2019
Subjects
Online AccessGet full text
ISSN2381-8549
DOI10.1109/ICIP.2019.8803129

Cover

Abstract An interpretable generative model for handwritten digits synthesis is proposed in this work. Modern image generative models such as the variational autoencoder (VAE) are trained by backpropagation (BP). The training process is complex, and its underlying mechanism is not transparent. Here, we present an explainable generative model using a feedforward design methodology without BP. Being similar to VAEs, it has an encoder and a decoder. For the encoder design, we derive principal-component-analysis-based (PCA-based) transform kernels using the covariance of its inputs. This process converts input images of correlated pixels to uncorrelated spectral components, which play the same role as latent variables in a VAE system. For the decoder design, we convert randomly generated spectral components to synthesized images through the inverse PCA transform. A subject test is conducted to compare the quality of digits generated using the proposed method and the VAE method. They offer comparable perceptual quality yet our model can be obtained at much lower complexity.
AbstractList An interpretable generative model for handwritten digits synthesis is proposed in this work. Modern image generative models such as the variational autoencoder (VAE) are trained by backpropagation (BP). The training process is complex, and its underlying mechanism is not transparent. Here, we present an explainable generative model using a feedforward design methodology without BP. Being similar to VAEs, it has an encoder and a decoder. For the encoder design, we derive principal-component-analysis-based (PCA-based) transform kernels using the covariance of its inputs. This process converts input images of correlated pixels to uncorrelated spectral components, which play the same role as latent variables in a VAE system. For the decoder design, we convert randomly generated spectral components to synthesized images through the inverse PCA transform. A subject test is conducted to compare the quality of digits generated using the proposed method and the VAE method. They offer comparable perceptual quality yet our model can be obtained at much lower complexity.
Author Zhu, Yao
Suri, Saksham
Chen, Yueru
Kuo, C.-C. Jay
Duan, Jiali
Kulkarni, Pranav
Author_xml – sequence: 1
  givenname: Yao
  surname: Zhu
  fullname: Zhu, Yao
  organization: University of Southern California, Los Angeles, CA, USA
– sequence: 2
  givenname: Saksham
  surname: Suri
  fullname: Suri, Saksham
  organization: IIIT, Delhi, India
– sequence: 3
  givenname: Pranav
  surname: Kulkarni
  fullname: Kulkarni, Pranav
  organization: IIT, Mumbai, India
– sequence: 4
  givenname: Yueru
  surname: Chen
  fullname: Chen, Yueru
  organization: University of Southern California, Los Angeles, CA, USA
– sequence: 5
  givenname: Jiali
  surname: Duan
  fullname: Duan, Jiali
  organization: University of Southern California, Los Angeles, CA, USA
– sequence: 6
  givenname: C.-C. Jay
  surname: Kuo
  fullname: Kuo, C.-C. Jay
  organization: University of Southern California, Los Angeles, CA, USA
BookMark eNotj8FKAzEUAKMo2NZ-gHjJD-yal6Rp3rFWbRcqCuq5ZNMXjazZkg1K_17BnuYyDMyYnaU-EWNXIGoAgTfNsnmupQCsrRUKJJ6wKc4tzJQ1Rmo0p2wklYXKzjResPEwfArx5ysYsdtF4k0qlPeZims74itKlF2J38Qf-x11PPSZr13a_eRYCiV-F99jGfjLIZUPGuJwyc6D6waaHjlhbw_3r8t1tXlaNcvFpopSqFJZ441SGrFtjXXOSesJyHqQRiuckzHKavIk0WvA4FotgmnBYNDBeC_UhF3_dyMRbfc5frl82B6X1S9s5Uwf
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP.2019.8803129
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538662496
1538662493
EISSN 2381-8549
EndPage 1914
ExternalDocumentID 8803129
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-86c633499bb68aaa28ce1e8c1264397e66384ece29c419fab40f6b169f4f6cc03
IEDL.DBID RIE
IngestDate Wed Aug 27 02:43:51 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-86c633499bb68aaa28ce1e8c1264397e66384ece29c419fab40f6b169f4f6cc03
PageCount 5
ParticipantIDs ieee_primary_8803129
PublicationCentury 2000
PublicationDate 2019-Sept.
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-Sept.
PublicationDecade 2010
PublicationTitle Proceedings - International Conference on Image Processing
PublicationTitleAbbrev ICIP
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
Score 2.1448116
Snippet An interpretable generative model for handwritten digits synthesis is proposed in this work. Modern image generative models such as the variational autoencoder...
SourceID ieee
SourceType Publisher
StartPage 1910
SubjectTerms Decoding
explainable machine learning
feedforward Design
Generative model
Image reconstruction
Image synthesis
Kernel
Principal component analysis
principal component analysis (PCA)
Training
Transforms
variational autoencoder (VAE)
Title An Interpretable Generative Model for Handwritten Digits Synthesis
URI https://ieeexplore.ieee.org/document/8803129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1NT8JAEIYnwMkTKhi_swePFvrF7vaoKAETDImScCO7y9Q0kmJoidFf72xbIRoP3pomTZudbd9nu-_MAFwpIUklKAKBxMAJBY8drdzYIe03pocxIYBNTh4_8uE0fJj1ZjW43ubCIGJhPsOOPSz28hcrs7G_yro01wLSpzrUheRlrtZ2cWXrxlS7lp4bdUf90cQat-xMKC760T2lEI9BE8bfty09I6-dTa475vNXRcb_Ptc-tHdpemyyFaADqGF6CM2KK1n11mYtuL1J2c5cqJfIymLT9kvHbDO0JSN0ZUOVLt7XSU4Uze6SlyTP2NNHSoCYJVkbpoP75_7QqXonOInvBrkjueFBQMsZrblUSvnSoIfSeH6BIEigIUM06Ecm9KJY6dCNufZ4FIcxRckNjqCRrlI8BhZqoXuCUEYIkjLpapSeK43hSngLIogTaNkhmb-V5THm1Wic_n36DPZsWEqb1jk08vUGL0jXc31ZBPQL_Lqiew
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT8IwFMcbxIOeUMH42x48OtxY13VHRclQICRCwo205c0skmHYiNG_3tdtQjQevC1Lli193b6frt_3HiFX0heoEhgBV4BrMZ9HlpJ2ZKH2a-1BhAhgkpP7Ax6O2ePEm1TI9ToXBgBy8xk0zWG-lz9b6JX5VXaDc81Ffdoi2x5jzCuytdbLK1M5pty3dOzgptvuDo11y8yF_LIf_VNy-ejUSP_7xoVr5LW5ylRTf_6qyfjfJ9sjjU2iHh2uJWifVCA5ILWSLGn53qZ1cneb0I29UM2BFuWmzbeOmnZoc4rwSkOZzN6XcYYcTe_jlzhL6fNHgoiYxmmDjDsPo3Zold0TrLhlu5kluOauiwsapbiQUraEBgeEdlo5hACihmCgoRVo5gSRVMyOuHJ4ELEI42S7h6SaLBI4IpQpX3k-wozvo5gJW4FwbKE1l74zQ4Y4JnUzJNO3okDGtByNk79PX5KdcNTvTXvdwdMp2TUhKkxbZ6SaLVdwjiqfqYs8uF-vx6XI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+International+Conference+on+Image+Processing&rft.atitle=An+Interpretable+Generative+Model+for+Handwritten+Digits+Synthesis&rft.au=Zhu%2C+Yao&rft.au=Suri%2C+Saksham&rft.au=Kulkarni%2C+Pranav&rft.au=Chen%2C+Yueru&rft.date=2019-09-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=1910&rft.epage=1914&rft_id=info:doi/10.1109%2FICIP.2019.8803129&rft.externalDocID=8803129