An Interpretable Generative Model for Handwritten Digits Synthesis
An interpretable generative model for handwritten digits synthesis is proposed in this work. Modern image generative models such as the variational autoencoder (VAE) are trained by backpropagation (BP). The training process is complex, and its underlying mechanism is not transparent. Here, we presen...
Saved in:
| Published in | Proceedings - International Conference on Image Processing pp. 1910 - 1914 |
|---|---|
| Main Authors | , , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.09.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2381-8549 |
| DOI | 10.1109/ICIP.2019.8803129 |
Cover
| Abstract | An interpretable generative model for handwritten digits synthesis is proposed in this work. Modern image generative models such as the variational autoencoder (VAE) are trained by backpropagation (BP). The training process is complex, and its underlying mechanism is not transparent. Here, we present an explainable generative model using a feedforward design methodology without BP. Being similar to VAEs, it has an encoder and a decoder. For the encoder design, we derive principal-component-analysis-based (PCA-based) transform kernels using the covariance of its inputs. This process converts input images of correlated pixels to uncorrelated spectral components, which play the same role as latent variables in a VAE system. For the decoder design, we convert randomly generated spectral components to synthesized images through the inverse PCA transform. A subject test is conducted to compare the quality of digits generated using the proposed method and the VAE method. They offer comparable perceptual quality yet our model can be obtained at much lower complexity. |
|---|---|
| AbstractList | An interpretable generative model for handwritten digits synthesis is proposed in this work. Modern image generative models such as the variational autoencoder (VAE) are trained by backpropagation (BP). The training process is complex, and its underlying mechanism is not transparent. Here, we present an explainable generative model using a feedforward design methodology without BP. Being similar to VAEs, it has an encoder and a decoder. For the encoder design, we derive principal-component-analysis-based (PCA-based) transform kernels using the covariance of its inputs. This process converts input images of correlated pixels to uncorrelated spectral components, which play the same role as latent variables in a VAE system. For the decoder design, we convert randomly generated spectral components to synthesized images through the inverse PCA transform. A subject test is conducted to compare the quality of digits generated using the proposed method and the VAE method. They offer comparable perceptual quality yet our model can be obtained at much lower complexity. |
| Author | Zhu, Yao Suri, Saksham Chen, Yueru Kuo, C.-C. Jay Duan, Jiali Kulkarni, Pranav |
| Author_xml | – sequence: 1 givenname: Yao surname: Zhu fullname: Zhu, Yao organization: University of Southern California, Los Angeles, CA, USA – sequence: 2 givenname: Saksham surname: Suri fullname: Suri, Saksham organization: IIIT, Delhi, India – sequence: 3 givenname: Pranav surname: Kulkarni fullname: Kulkarni, Pranav organization: IIT, Mumbai, India – sequence: 4 givenname: Yueru surname: Chen fullname: Chen, Yueru organization: University of Southern California, Los Angeles, CA, USA – sequence: 5 givenname: Jiali surname: Duan fullname: Duan, Jiali organization: University of Southern California, Los Angeles, CA, USA – sequence: 6 givenname: C.-C. Jay surname: Kuo fullname: Kuo, C.-C. Jay organization: University of Southern California, Los Angeles, CA, USA |
| BookMark | eNotj8FKAzEUAKMo2NZ-gHjJD-yal6Rp3rFWbRcqCuq5ZNMXjazZkg1K_17BnuYyDMyYnaU-EWNXIGoAgTfNsnmupQCsrRUKJJ6wKc4tzJQ1Rmo0p2wklYXKzjResPEwfArx5ysYsdtF4k0qlPeZims74itKlF2J38Qf-x11PPSZr13a_eRYCiV-F99jGfjLIZUPGuJwyc6D6waaHjlhbw_3r8t1tXlaNcvFpopSqFJZ441SGrFtjXXOSesJyHqQRiuckzHKavIk0WvA4FotgmnBYNDBeC_UhF3_dyMRbfc5frl82B6X1S9s5Uwf |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICIP.2019.8803129 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9781538662496 1538662493 |
| EISSN | 2381-8549 |
| EndPage | 1914 |
| ExternalDocumentID | 8803129 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i203t-86c633499bb68aaa28ce1e8c1264397e66384ece29c419fab40f6b169f4f6cc03 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:43:51 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-86c633499bb68aaa28ce1e8c1264397e66384ece29c419fab40f6b169f4f6cc03 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_8803129 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-Sept. |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-Sept. |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings - International Conference on Image Processing |
| PublicationTitleAbbrev | ICIP |
| PublicationYear | 2019 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020131 |
| Score | 2.1448116 |
| Snippet | An interpretable generative model for handwritten digits synthesis is proposed in this work. Modern image generative models such as the variational autoencoder... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1910 |
| SubjectTerms | Decoding explainable machine learning feedforward Design Generative model Image reconstruction Image synthesis Kernel Principal component analysis principal component analysis (PCA) Training Transforms variational autoencoder (VAE) |
| Title | An Interpretable Generative Model for Handwritten Digits Synthesis |
| URI | https://ieeexplore.ieee.org/document/8803129 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1NT8JAEIYnwMkTKhi_swePFvrF7vaoKAETDImScCO7y9Q0kmJoidFf72xbIRoP3pomTZudbd9nu-_MAFwpIUklKAKBxMAJBY8drdzYIe03pocxIYBNTh4_8uE0fJj1ZjW43ubCIGJhPsOOPSz28hcrs7G_yro01wLSpzrUheRlrtZ2cWXrxlS7lp4bdUf90cQat-xMKC760T2lEI9BE8bfty09I6-dTa475vNXRcb_Ptc-tHdpemyyFaADqGF6CM2KK1n11mYtuL1J2c5cqJfIymLT9kvHbDO0JSN0ZUOVLt7XSU4Uze6SlyTP2NNHSoCYJVkbpoP75_7QqXonOInvBrkjueFBQMsZrblUSvnSoIfSeH6BIEigIUM06Ecm9KJY6dCNufZ4FIcxRckNjqCRrlI8BhZqoXuCUEYIkjLpapSeK43hSngLIogTaNkhmb-V5THm1Wic_n36DPZsWEqb1jk08vUGL0jXc31ZBPQL_Lqiew |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT8IwFMcbxIOeUMH42x48OtxY13VHRclQICRCwo205c0skmHYiNG_3tdtQjQevC1Lli193b6frt_3HiFX0heoEhgBV4BrMZ9HlpJ2ZKH2a-1BhAhgkpP7Ax6O2ePEm1TI9ToXBgBy8xk0zWG-lz9b6JX5VXaDc81Ffdoi2x5jzCuytdbLK1M5pty3dOzgptvuDo11y8yF_LIf_VNy-ejUSP_7xoVr5LW5ylRTf_6qyfjfJ9sjjU2iHh2uJWifVCA5ILWSLGn53qZ1cneb0I29UM2BFuWmzbeOmnZoc4rwSkOZzN6XcYYcTe_jlzhL6fNHgoiYxmmDjDsPo3Zold0TrLhlu5kluOauiwsapbiQUraEBgeEdlo5hACihmCgoRVo5gSRVMyOuHJ4ELEI42S7h6SaLBI4IpQpX3k-wozvo5gJW4FwbKE1l74zQ4Y4JnUzJNO3okDGtByNk79PX5KdcNTvTXvdwdMp2TUhKkxbZ6SaLVdwjiqfqYs8uF-vx6XI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+International+Conference+on+Image+Processing&rft.atitle=An+Interpretable+Generative+Model+for+Handwritten+Digits+Synthesis&rft.au=Zhu%2C+Yao&rft.au=Suri%2C+Saksham&rft.au=Kulkarni%2C+Pranav&rft.au=Chen%2C+Yueru&rft.date=2019-09-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=1910&rft.epage=1914&rft_id=info:doi/10.1109%2FICIP.2019.8803129&rft.externalDocID=8803129 |