Performance Analysis of Keystroke Dynamics Using Classification Algorithms
Authentication is the process of verifying the identity of a user. Biometric authentication assures user identity by identifying users physiological or behavioral traits. Keystroke dynamics is a behavioral biometric based on users typing pattern. It can be used to authenticate legitimate users based...
        Saved in:
      
    
          | Published in | 2020 3rd International Conference on Information and Computer Technologies (ICICT) pp. 124 - 130 | 
|---|---|
| Main Authors | , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.03.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| DOI | 10.1109/ICICT50521.2020.00027 | 
Cover
| Abstract | Authentication is the process of verifying the identity of a user. Biometric authentication assures user identity by identifying users physiological or behavioral traits. Keystroke dynamics is a behavioral biometric based on users typing pattern. It can be used to authenticate legitimate users based on their unique typing style on the keyboard. From a pattern recognition point of view, user authentication using keystroke dynamics is a challenging task. It can be accomplished by using classification algorithms - two-class and one-class classification algorithms. In this paper, we study and evaluate the effectiveness of using the one-class classification algorithms over the two-class classification algorithms for keystroke dynamics authentication system. We implemented and evaluated 18 classification algorithms (both two-class and one-class) from the literature of keystroke dynamics and pattern recognition. The result of our experiments is evaluated using 28 subjects with the total of 378 unique comparisons for each classifier. Our results show that the top-performing classifiers of one-class are not very different from two-class classifiers and can be considered to use in the real-world authentication systems. | 
    
|---|---|
| AbstractList | Authentication is the process of verifying the identity of a user. Biometric authentication assures user identity by identifying users physiological or behavioral traits. Keystroke dynamics is a behavioral biometric based on users typing pattern. It can be used to authenticate legitimate users based on their unique typing style on the keyboard. From a pattern recognition point of view, user authentication using keystroke dynamics is a challenging task. It can be accomplished by using classification algorithms - two-class and one-class classification algorithms. In this paper, we study and evaluate the effectiveness of using the one-class classification algorithms over the two-class classification algorithms for keystroke dynamics authentication system. We implemented and evaluated 18 classification algorithms (both two-class and one-class) from the literature of keystroke dynamics and pattern recognition. The result of our experiments is evaluated using 28 subjects with the total of 378 unique comparisons for each classifier. Our results show that the top-performing classifiers of one-class are not very different from two-class classifiers and can be considered to use in the real-world authentication systems. | 
    
| Author | Darabseh, Alaa Pal, Doyel  | 
    
| Author_xml | – sequence: 1 givenname: Alaa surname: Darabseh fullname: Darabseh, Alaa organization: LaGuardia Community College, CUNY – sequence: 2 givenname: Doyel surname: Pal fullname: Pal, Doyel organization: LaGuardia Community College, CUNY  | 
    
| BookMark | eNotjM1OxCAYADHRg677BMaEF-j6QaHAsal_1U30sHvefEthJbZgoJe-vUY9TOYwyVyR85iiI-SWwYYxMHd913c7CZKzDQcOGwDg6oysjdJM8V9qeUle3l32KU8YraNtxHEpodDk6atbypzTp6P3S8Qp2EL3JcQT7UYsJfhgcQ4p0nY8pRzmj6lckwuPY3Hrf6_I_vFh1z1X27envmu3VeBQz5Wygxa-0YpJiaxBZUCLpmG1AWgUWjug-KlCHK1D3xyF4Ras0sqjGLQd6hW5-fsG59zhK4cJ83IwYDivZf0NTDhLeA | 
    
| CODEN | IEEPAD | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/ICICT50521.2020.00027 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISBN | 9781728172835 1728172837  | 
    
| EndPage | 130 | 
    
| ExternalDocumentID | 9092235 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IL CBEJK RIE RIL  | 
    
| ID | FETCH-LOGICAL-i203t-7cd84f687155a16a79084661390067accda468744bceaf6b492c0c787fa4d8cd3 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Thu Jun 29 18:38:15 EDT 2023 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i203t-7cd84f687155a16a79084661390067accda468744bceaf6b492c0c787fa4d8cd3 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | ieee_primary_9092235 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-Mar | 
    
| PublicationDateYYYYMMDD | 2020-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-Mar  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 2020 3rd International Conference on Information and Computer Technologies (ICICT) | 
    
| PublicationTitleAbbrev | ICICT | 
    
| PublicationYear | 2020 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| Score | 1.738987 | 
    
| Snippet | Authentication is the process of verifying the identity of a user. Biometric authentication assures user identity by identifying users physiological or... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 124 | 
    
| SubjectTerms | Authentication biometrics Classification algorithms Detection algorithms Feature extraction Heuristic algorithms keystroke dynamics Machine learning Machine learning algorithms one-class classifier pattern recognition two-class classifier  | 
    
| Title | Performance Analysis of Keystroke Dynamics Using Classification Algorithms | 
    
| URI | https://ieeexplore.ieee.org/document/9092235 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH8BTp7UgPE7PXh0Y-u6bj0alAAGwwESbqTt3pSgzMC4-NfbdnxE48Hb0suWvnS_vvb3AXBnEEhR8-fzMLGnVRSZWVJae5jx1LS4ImcuG3D4wnsTNpjG0xrc77UwiOjIZ-jbR3eXnxV6Y4_K2iIQBs3iOtSTlFdara0oJwxEu9_pd8Y2l822fdQytgL6MzTFYUb3GIa7t1VUkYW_KZWvv34ZMf73c06gdVDnkdEed06hhssmDEYHBQDZOY2QIifPplTlqlggeazC59fE0QSIi8O0RCFXG_Lw_lqs5uXbx7oFk-7TuNPztjkJ3pwGUeklOktZzk3rE8cy5DIRgdlVGJwWFouk1plk3NrcK40y54oJqgNtVmoumQ0vis6gsSyWeA4k0zELQ7SON5KlqEWqVKwky82uJaJKX0DTzsPss7LCmG2n4PLv4Ss4spWoKFvX0ChXG7wxGF6qW1e8bxwyneU | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGP-CeNCTGjC-7cGjg620Yz0alPAOB0i4kbb7pgRlBsbFv9624xGNB29LL1v6pfv1a38PgAeDQIqaP5-HdXtaRZGZJaW1h3EYmRZXJMxlA_YHYWvMOhM-KcDjTguDiI58hhX76O7y41Sv7VFZVfjCoBk_gEPOGOO5Wmsjywl8UW032o2RTWazjR-1nC2f_oxNcajRPIH-9n05WWReWWeqor9-WTH-94NOobzX55HhDnnOoICLEnSGew0A2XqNkDQhXVOsbJnOkTzn8fMr4ogCxAViWqqQqw55en9Nl7Ps7WNVhnHzZdRoeZukBG9G_Vrm1XUcsSQ0zQ_nMghlXfhmX2GQWlg0klrHkoXW6F5plEmomKDa12atJpLZ-KLaORQX6QIvgMSasyBA63kjWYRaREpxJVli9i01qvQllOw8TD9zM4zpZgqu_h6-h6PWqN-b9tqD7jUc26rkBK4bKGbLNd4aRM_UnSvkN5AKoTI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+3rd+International+Conference+on+Information+and+Computer+Technologies+%28ICICT%29&rft.atitle=Performance+Analysis+of+Keystroke+Dynamics+Using+Classification+Algorithms&rft.au=Darabseh%2C+Alaa&rft.au=Pal%2C+Doyel&rft.date=2020-03-01&rft.pub=IEEE&rft.spage=124&rft.epage=130&rft_id=info:doi/10.1109%2FICICT50521.2020.00027&rft.externalDocID=9092235 |