Performance Analysis of Keystroke Dynamics Using Classification Algorithms

Authentication is the process of verifying the identity of a user. Biometric authentication assures user identity by identifying users physiological or behavioral traits. Keystroke dynamics is a behavioral biometric based on users typing pattern. It can be used to authenticate legitimate users based...

Full description

Saved in:
Bibliographic Details
Published in2020 3rd International Conference on Information and Computer Technologies (ICICT) pp. 124 - 130
Main Authors Darabseh, Alaa, Pal, Doyel
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.03.2020
Subjects
Online AccessGet full text
DOI10.1109/ICICT50521.2020.00027

Cover

Abstract Authentication is the process of verifying the identity of a user. Biometric authentication assures user identity by identifying users physiological or behavioral traits. Keystroke dynamics is a behavioral biometric based on users typing pattern. It can be used to authenticate legitimate users based on their unique typing style on the keyboard. From a pattern recognition point of view, user authentication using keystroke dynamics is a challenging task. It can be accomplished by using classification algorithms - two-class and one-class classification algorithms. In this paper, we study and evaluate the effectiveness of using the one-class classification algorithms over the two-class classification algorithms for keystroke dynamics authentication system. We implemented and evaluated 18 classification algorithms (both two-class and one-class) from the literature of keystroke dynamics and pattern recognition. The result of our experiments is evaluated using 28 subjects with the total of 378 unique comparisons for each classifier. Our results show that the top-performing classifiers of one-class are not very different from two-class classifiers and can be considered to use in the real-world authentication systems.
AbstractList Authentication is the process of verifying the identity of a user. Biometric authentication assures user identity by identifying users physiological or behavioral traits. Keystroke dynamics is a behavioral biometric based on users typing pattern. It can be used to authenticate legitimate users based on their unique typing style on the keyboard. From a pattern recognition point of view, user authentication using keystroke dynamics is a challenging task. It can be accomplished by using classification algorithms - two-class and one-class classification algorithms. In this paper, we study and evaluate the effectiveness of using the one-class classification algorithms over the two-class classification algorithms for keystroke dynamics authentication system. We implemented and evaluated 18 classification algorithms (both two-class and one-class) from the literature of keystroke dynamics and pattern recognition. The result of our experiments is evaluated using 28 subjects with the total of 378 unique comparisons for each classifier. Our results show that the top-performing classifiers of one-class are not very different from two-class classifiers and can be considered to use in the real-world authentication systems.
Author Darabseh, Alaa
Pal, Doyel
Author_xml – sequence: 1
  givenname: Alaa
  surname: Darabseh
  fullname: Darabseh, Alaa
  organization: LaGuardia Community College, CUNY
– sequence: 2
  givenname: Doyel
  surname: Pal
  fullname: Pal, Doyel
  organization: LaGuardia Community College, CUNY
BookMark eNotjM1OxCAYADHRg677BMaEF-j6QaHAsal_1U30sHvefEthJbZgoJe-vUY9TOYwyVyR85iiI-SWwYYxMHd913c7CZKzDQcOGwDg6oysjdJM8V9qeUle3l32KU8YraNtxHEpodDk6atbypzTp6P3S8Qp2EL3JcQT7UYsJfhgcQ4p0nY8pRzmj6lckwuPY3Hrf6_I_vFh1z1X27envmu3VeBQz5Wygxa-0YpJiaxBZUCLpmG1AWgUWjug-KlCHK1D3xyF4Ras0sqjGLQd6hW5-fsG59zhK4cJ83IwYDivZf0NTDhLeA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICICT50521.2020.00027
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728172835
1728172837
EndPage 130
ExternalDocumentID 9092235
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-7cd84f687155a16a79084661390067accda468744bceaf6b492c0c787fa4d8cd3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:15 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-7cd84f687155a16a79084661390067accda468744bceaf6b492c0c787fa4d8cd3
PageCount 7
ParticipantIDs ieee_primary_9092235
PublicationCentury 2000
PublicationDate 2020-Mar
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-Mar
PublicationDecade 2020
PublicationTitle 2020 3rd International Conference on Information and Computer Technologies (ICICT)
PublicationTitleAbbrev ICICT
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.738987
Snippet Authentication is the process of verifying the identity of a user. Biometric authentication assures user identity by identifying users physiological or...
SourceID ieee
SourceType Publisher
StartPage 124
SubjectTerms Authentication
biometrics
Classification algorithms
Detection algorithms
Feature extraction
Heuristic algorithms
keystroke dynamics
Machine learning
Machine learning algorithms
one-class classifier
pattern recognition
two-class classifier
Title Performance Analysis of Keystroke Dynamics Using Classification Algorithms
URI https://ieeexplore.ieee.org/document/9092235
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH8BTp7UgPE7PXh0Y-u6bj0alAAGwwESbqTt3pSgzMC4-NfbdnxE48Hb0suWvnS_vvb3AXBnEEhR8-fzMLGnVRSZWVJae5jx1LS4ImcuG3D4wnsTNpjG0xrc77UwiOjIZ-jbR3eXnxV6Y4_K2iIQBs3iOtSTlFdara0oJwxEu9_pd8Y2l822fdQytgL6MzTFYUb3GIa7t1VUkYW_KZWvv34ZMf73c06gdVDnkdEed06hhssmDEYHBQDZOY2QIifPplTlqlggeazC59fE0QSIi8O0RCFXG_Lw_lqs5uXbx7oFk-7TuNPztjkJ3pwGUeklOktZzk3rE8cy5DIRgdlVGJwWFouk1plk3NrcK40y54oJqgNtVmoumQ0vis6gsSyWeA4k0zELQ7SON5KlqEWqVKwky82uJaJKX0DTzsPss7LCmG2n4PLv4Ss4spWoKFvX0ChXG7wxGF6qW1e8bxwyneU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGP-CeNCTGjC-7cGjg620Yz0alPAOB0i4kbb7pgRlBsbFv9624xGNB29LL1v6pfv1a38PgAeDQIqaP5-HdXtaRZGZJaW1h3EYmRZXJMxlA_YHYWvMOhM-KcDjTguDiI58hhX76O7y41Sv7VFZVfjCoBk_gEPOGOO5Wmsjywl8UW032o2RTWazjR-1nC2f_oxNcajRPIH-9n05WWReWWeqor9-WTH-94NOobzX55HhDnnOoICLEnSGew0A2XqNkDQhXVOsbJnOkTzn8fMr4ogCxAViWqqQqw55en9Nl7Ps7WNVhnHzZdRoeZukBG9G_Vrm1XUcsSQ0zQ_nMghlXfhmX2GQWlg0klrHkoXW6F5plEmomKDa12atJpLZ-KLaORQX6QIvgMSasyBA63kjWYRaREpxJVli9i01qvQllOw8TD9zM4zpZgqu_h6-h6PWqN-b9tqD7jUc26rkBK4bKGbLNd4aRM_UnSvkN5AKoTI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+3rd+International+Conference+on+Information+and+Computer+Technologies+%28ICICT%29&rft.atitle=Performance+Analysis+of+Keystroke+Dynamics+Using+Classification+Algorithms&rft.au=Darabseh%2C+Alaa&rft.au=Pal%2C+Doyel&rft.date=2020-03-01&rft.pub=IEEE&rft.spage=124&rft.epage=130&rft_id=info:doi/10.1109%2FICICT50521.2020.00027&rft.externalDocID=9092235