Cooperative LPI Performance Optimization for Multistatic Radar Under Uncertainties: A Robust Stackelberg Game Perspective
This paper studies the problem of robust Stackelberg game-based low probability of intercept (LPI) performance optimization for multistatic radar system. Recognizing that the precise knowledge of path propagation loss coefficients is not exactly known, these parameters are assumed to lie in uncertai...
        Saved in:
      
    
          | Published in | Proceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop pp. 1 - 5 | 
|---|---|
| Main Authors | , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.06.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2151-870X | 
| DOI | 10.1109/SAM48682.2020.9104266 | 
Cover
| Abstract | This paper studies the problem of robust Stackelberg game-based low probability of intercept (LPI) performance optimization for multistatic radar system. Recognizing that the precise knowledge of path propagation loss coefficients is not exactly known, these parameters are assumed to lie in uncertainty sets bounded by known upper and lower bounds. The strategy aims to minimize the worst-case radiated power of multistatic radar by optimizing power allocation with uncertain path propagation loss coefficients, subject to a desired signal-to-interference-plus-noise ratio (SINR) requirement for target detection and several resource constraints. We formulate this optimization process as a robust hierarchical Stackelberg game, where the fusion center of the multistatic radar acts as a leader, and the multiple radars play the role of followers. The robust Nash bargaining solution (RNBS) solution for the formulated game is derived. Then, the existence and uniqueness of the RNBS are strictly proved. Moreover, a distributed iterative approach is developed to solve the resulting problem. Finally, simulation results demonstrate the effectiveness of the proposed strategy. | 
    
|---|---|
| AbstractList | This paper studies the problem of robust Stackelberg game-based low probability of intercept (LPI) performance optimization for multistatic radar system. Recognizing that the precise knowledge of path propagation loss coefficients is not exactly known, these parameters are assumed to lie in uncertainty sets bounded by known upper and lower bounds. The strategy aims to minimize the worst-case radiated power of multistatic radar by optimizing power allocation with uncertain path propagation loss coefficients, subject to a desired signal-to-interference-plus-noise ratio (SINR) requirement for target detection and several resource constraints. We formulate this optimization process as a robust hierarchical Stackelberg game, where the fusion center of the multistatic radar acts as a leader, and the multiple radars play the role of followers. The robust Nash bargaining solution (RNBS) solution for the formulated game is derived. Then, the existence and uniqueness of the RNBS are strictly proved. Moreover, a distributed iterative approach is developed to solve the resulting problem. Finally, simulation results demonstrate the effectiveness of the proposed strategy. | 
    
| Author | Ding, Lintao Zhou, Jianjiang Shi, Chenguang Wang, Fei  | 
    
| Author_xml | – sequence: 1 givenname: Chenguang surname: Shi fullname: Shi, Chenguang organization: Science and Technology on Electro-Optic Control Laboratory,Luoyang,China,471009 – sequence: 2 givenname: Lintao surname: Ding fullname: Ding, Lintao organization: Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.),Ministry of Education,Nanjing,China,210016 – sequence: 3 givenname: Fei surname: Wang fullname: Wang, Fei organization: Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.),Ministry of Education,Nanjing,China,210016 – sequence: 4 givenname: Jianjiang surname: Zhou fullname: Zhou, Jianjiang organization: Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.),Ministry of Education,Nanjing,China,210016  | 
    
| BookMark | eNotUNtKAzEUjKKgrX6BCPmBrbltNutbKVoLLS2tBd_Kye5ZiXYvJKlQv94t9mUGZmCGmQG5atoGCXnkbMQ5y58244Uy2oiRYIKNcs6U0PqCDHgmDOe50uqS3Aqe8sRk7OOGDEL4YkxlTKa35Dhp2w49RPeDdL6a0RX6qvU1NAXSZRdd7X57s21or9LFYR9diL1Q0DWU4Om2KfGEBfoIrokOwzMd03VrDyHSTYTiG_cW_SedQo2n9NBhcWq7I9cV7APen3lItq8v75O3ZL6czibjeeIEkzHJcihzmVmbMW2VSU1RgVFYCkCrTQpKZkrpEoyUQlrWz08LMFZyXjINVSWH5OE_1yHirvOuBn_cnW-Sfy-mYJc | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/SAM48682.2020.9104266 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISBN | 1728119464 9781728119465  | 
    
| EISSN | 2151-870X | 
    
| EndPage | 5 | 
    
| ExternalDocumentID | 9104266 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 29P 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS  | 
    
| ID | FETCH-LOGICAL-i203t-79ad937bb706b4858cfa84ed2aeb685a437446da83323b09105ca8b311d06aff3 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Aug 27 02:50:49 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i203t-79ad937bb706b4858cfa84ed2aeb685a437446da83323b09105ca8b311d06aff3 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | ieee_primary_9104266 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-June | 
    
| PublicationDateYYYYMMDD | 2020-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-June  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Proceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop | 
    
| PublicationTitleAbbrev | SAM | 
    
| PublicationYear | 2020 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0047035 | 
    
| Score | 2.132474 | 
    
| Snippet | This paper studies the problem of robust Stackelberg game-based low probability of intercept (LPI) performance optimization for multistatic radar system.... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1 | 
    
| SubjectTerms | Games Iterative methods Low probability of intercept (LPI) Multistatic radar multistatic radar system Object detection Propagation losses robust Nash bargaining solution (RNBS) robust Stackelberg game Simulation Uncertainty uncertainty model  | 
    
| Title | Cooperative LPI Performance Optimization for Multistatic Radar Under Uncertainties: A Robust Stackelberg Game Perspective | 
    
| URI | https://ieeexplore.ieee.org/document/9104266 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT8IwFMcb4KQXf4Dxd3rw6Ma2tlvnjRARjShBSbiR_lpCDIzgdtC_3tdtgBoPXpaly36kbd77tnuf9xC6EioQkc-ME8U6gAWKHzqSK-JIHZtAJSDJmYWTB09hf0wfJmxSQ9cbFsYYUwSfGdeeFv_ydapyu1XWBtdmHUod1SMelqzW2upSmLmsInR8L26_dAaUh9yiVoHnVjf-qKBSOJDeHhqsX13Gjby5eSZd9fkrK-N_v20ftbaoHh5unNABqpnFIdr9lmWwiT66abo0ZYZv_Di8x8MtLICfwWTMKxYTQysuiFyLGc0UHgktVrgojQRHVUYP2AysN7iDR6nM3zMMahUMQZEpC9-JubFPX-ObLTTu3b52-05VccGZBR7JYMCEBr0iZeSFknLGVSI4NToQRoacCUoiWD5qwQkJiLRSgynBJfF97YUiScgRaizShTlGmPgJXJexJjoGIxEIGXEqFFMGBKYU9AQ1bSdOl2VSjWnVf6d_N5-hHTuQZYzWOWpkq9xcgBrI5GUxDb4AlNC26A | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT8IwFMcbxIN68QcYf9uDRze2td06b4SIoAwJQsKN9NcSYmAEt4P-9bbbEDUevCxLl_1I27z3bfc-7wFww4THApcoKwilpxcorm9xKpDFZag8EWtJTgycHPX9zhg_TsikAm6_WBilVB58pmxzmv_Ll4nIzFZZQ7s241C2wDbBGJOC1lrbXaznLikZHdcJGy_NCFOfGtjKc-zy1h81VHIX0t4H0frlReTIq52l3BYfv_Iy_vfrDkB9A-vBwZcbOgQVtTgCe9_yDNbAeytJlqrI8Q17gy4cbHAB-KyNxrykMaFuhTmTa0CjmYBDJtkK5sWR9FEU8QMmB-sdbMJhwrO3FGq9qk1BnisLPrC5Mk9fA5x1MG7fj1odq6y5YM08B6V6yJjUioXzwPE5poSKmFGspMcU9ylhGAV6ASkZRchD3IgNIhjlyHWl47M4RsegukgW6gRA5Mb6Og8lkqE2Ex7jAcVMEKG0xOQMn4Ka6cTpskirMS377-zv5muw0xlFvWmv2386B7tmUIuIrQtQTVeZutTaIOVX-ZT4BFMeujU | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+IEEE+Sensor+Array+and+Multichannel+Signal+Processing+Workshop&rft.atitle=Cooperative+LPI+Performance+Optimization+for+Multistatic+Radar+Under+Uncertainties%3A+A+Robust+Stackelberg+Game+Perspective&rft.au=Shi%2C+Chenguang&rft.au=Ding%2C+Lintao&rft.au=Wang%2C+Fei&rft.au=Zhou%2C+Jianjiang&rft.date=2020-06-01&rft.pub=IEEE&rft.eissn=2151-870X&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FSAM48682.2020.9104266&rft.externalDocID=9104266 |