Conflict-Based Search for Multi-Robot Motion Planning with Kinodynamic Constraints

Multi-robot motion planning (MRMP) is the fundamental problem of finding non-colliding trajectories for multiple robots acting in an environment, under kinodynamic constraints. Due to its complexity, existing algorithms are either incomplete, or utilize simplifying assumptions. This work introduces...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 13494 - 13499
Main Authors Kottinger, Justin, Almagor, Shaull, Lahijanian, Morteza
Format Conference Proceeding
LanguageEnglish
Published IEEE 23.10.2022
Subjects
Online AccessGet full text
ISSN2153-0866
DOI10.1109/IROS47612.2022.9982018

Cover

Abstract Multi-robot motion planning (MRMP) is the fundamental problem of finding non-colliding trajectories for multiple robots acting in an environment, under kinodynamic constraints. Due to its complexity, existing algorithms are either incomplete, or utilize simplifying assumptions. This work introduces Kinodynamic Conflict-Based Search (K-CBS), a decentralized MRMP algorithm that is general, scalable, and probabilistically complete. The algorithm takes inspiration from successful solutions to the discrete analogue of MRMP over finite graphs, known as Multi-Agent Path Finding (MAPF). Specifically, we adapt ideas from Conflict-Based Search (CBS)-a popular decentralized MAPF algorithm-to the MRMP setting. The novelty of our approach is that we work directly in the continuous domain, without discretization. In particular, the kinodynamic constraints are treated natively. K-CBS plans for each robot individually using a low-level planner and grows a conflict tree to resolve collisions between robots by defining constraints. The low-level planner can be any sampling-based, tree-search algorithm for kinodynamic robots, thus lifting existing planners for single robots to the multi-robot setting. We show that K-CBS inherits the (probabilistic) completeness of the low-level planner. We illustrate the generality and performance of K-CBS in several case studies and benchmarks.
AbstractList Multi-robot motion planning (MRMP) is the fundamental problem of finding non-colliding trajectories for multiple robots acting in an environment, under kinodynamic constraints. Due to its complexity, existing algorithms are either incomplete, or utilize simplifying assumptions. This work introduces Kinodynamic Conflict-Based Search (K-CBS), a decentralized MRMP algorithm that is general, scalable, and probabilistically complete. The algorithm takes inspiration from successful solutions to the discrete analogue of MRMP over finite graphs, known as Multi-Agent Path Finding (MAPF). Specifically, we adapt ideas from Conflict-Based Search (CBS)-a popular decentralized MAPF algorithm-to the MRMP setting. The novelty of our approach is that we work directly in the continuous domain, without discretization. In particular, the kinodynamic constraints are treated natively. K-CBS plans for each robot individually using a low-level planner and grows a conflict tree to resolve collisions between robots by defining constraints. The low-level planner can be any sampling-based, tree-search algorithm for kinodynamic robots, thus lifting existing planners for single robots to the multi-robot setting. We show that K-CBS inherits the (probabilistic) completeness of the low-level planner. We illustrate the generality and performance of K-CBS in several case studies and benchmarks.
Author Kottinger, Justin
Almagor, Shaull
Lahijanian, Morteza
Author_xml – sequence: 1
  givenname: Justin
  surname: Kottinger
  fullname: Kottinger, Justin
  email: justin.kottinger@colorado.edu
  organization: University of Colorado Boulder,Dept. of Aerospace Engineering Sciences,USA
– sequence: 2
  givenname: Shaull
  surname: Almagor
  fullname: Almagor, Shaull
  email: shaull@cs.technion.ac.il
  organization: Technion,The Henry and Marilyn Taub Faculty of Computer Science,Israel
– sequence: 3
  givenname: Morteza
  surname: Lahijanian
  fullname: Lahijanian, Morteza
  email: morteza.lahijanian@colorado.edu
  organization: University of Colorado Boulder,Dept. of Aerospace Engineering Sciences,USA
BookMark eNot0N1KwzAYgOEoCm5zVyBIbqA1P83foRanw41Jp8cjTb-4SJdIG5HdvYI7es-eg3eKLmKKgNAtJSWlxNwtm822UpKykhHGSmM0I1SfoSmVUlTKMMXO0YRRwQuipbxC83H8JIRQoow2coKaOkXfB5eLBztCh7dgB7fHPg14_d3nUDSpTRmvUw4p4tfexhjiB_4JeY9fQkzdMdpDcPiPGfNgQ8zjNbr0th9hfuoMvS8e3-rnYrV5Wtb3qyIwwnOhRGU7zTxvdSc9p1poJiy0wtGOgreagHJgWiOV8F604ICLymnCO8Wk03yGbv7dAAC7ryEc7HDcnRbwX4J1U6A
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IROS47612.2022.9982018
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665479272
9781665479271
EISSN 2153-0866
EndPage 13499
ExternalDocumentID 9982018
Genre orig-research
GrantInformation_xml – fundername: University of Colorado Boulder
  funderid: 10.13039/100007493
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-754ad82f3b8d6f3185825aeb5c1d1efa80e7ce9b9675ff5bece354c803d726c83
IEDL.DBID RIE
IngestDate Wed Aug 27 02:27:40 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-754ad82f3b8d6f3185825aeb5c1d1efa80e7ce9b9675ff5bece354c803d726c83
PageCount 6
ParticipantIDs ieee_primary_9982018
PublicationCentury 2000
PublicationDate 2022-Oct.-23
PublicationDateYYYYMMDD 2022-10-23
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-23
  day: 23
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems
PublicationTitleAbbrev IROS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001079896
Score 2.443364
Snippet Multi-robot motion planning (MRMP) is the fundamental problem of finding non-colliding trajectories for multiple robots acting in an environment, under...
SourceID ieee
SourceType Publisher
StartPage 13494
SubjectTerms Benchmark testing
Collision avoidance
Complexity theory
Intelligent robots
Planning
Probabilistic logic
Trajectory
Title Conflict-Based Search for Multi-Robot Motion Planning with Kinodynamic Constraints
URI https://ieeexplore.ieee.org/document/9982018
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLXaTrDwaBFveWDEqeNHYq9UVAVUQIVK3ar4EalCSipIF74e20lbQAxMtixFtnyHk3N9zz0AXNFEUqscU00xyRBTjCFJuEBYGZVJRbAKqrTxYzKasvsZn7XA9UYLY60NxWc28tPwlm9KvfKpsr6jBg6vRBu0U5HUWq1tPgWnUsikEQHHWPbvJk8vzLF0L7ciJGo-_uGiEkBkuAfG6-3r2pG3aFWpSH_-6sz43_Ptg95WrgefN0B0AFq2OAS73zoNdsFk0Mg_0I2DLQPrKmPo_lhhkOCiSanKCo6Dpw9cOxlBn6WFD4uiNLVxPfT-nsFVovrogenw9nUwQo2dAloQTCuUcpYZQXKqhElyr5p27DCziuvYxDbPBLaptlJJxyHynLvgWsqZFpialCRa0CPQKcrCHgOouZSaOliLjWWZ1JkSWseJlJy4wdgT0PW3M1_WHTPmzcWc_r18BnZ8hDwiEHoOOtX7yl44qK_UZYjxF7V6qcs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLVKGYCFR0G88cCI08SPxF6pqFraFFRaqVsVPyJVSAmCdOHrsZO0BcTAZMuSJct3OD7X99wDwC0JBTHSMtXIxwmiklIkMOPIl1omQmJflqq0eBT2pvRxxmYNcLfWwhhjyuIz47lp-Zevc7V0qbK2pQYWr_gW2GaUUlaptTYZFT8SXIS1DDjwRbs_fnqhlqc7wRXGXr39h49KCSPdfRCvDlBVj7x6y0J66vNXb8b_nvAAHG8Ee_B5DUWHoGGyI7D3rddgC4w7tQAE3Vvg0rCqM4b2zQpLES4a5zIvYFy6-sCVlxF0eVo4WGS5rqzroXP4LH0lio9jMO0-TDo9VBsqoAX2SYEiRhPNcUok12HqdNOWHyZGMhXowKQJ902kjJDCsog0ZTa8hjCquE90hEPFyQloZnlmTgFUTAhFLLAF2tBEqERypYJQCIbtoM0ZaLnbmb9VPTPm9cWc_718A3Z6k3g4H_ZHgwuw66Ll8AGTS9As3pfmygJ_Ia_LeH8Bx6atGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE%2FRSJ+International+Conference+on+Intelligent+Robots+and+Systems&rft.atitle=Conflict-Based+Search+for+Multi-Robot+Motion+Planning+with+Kinodynamic+Constraints&rft.au=Kottinger%2C+Justin&rft.au=Almagor%2C+Shaull&rft.au=Lahijanian%2C+Morteza&rft.date=2022-10-23&rft.pub=IEEE&rft.eissn=2153-0866&rft.spage=13494&rft.epage=13499&rft_id=info:doi/10.1109%2FIROS47612.2022.9982018&rft.externalDocID=9982018