A Map Matching Algorithm for Noisy, Low Frequent Public Transportation GPS Data

Identifying the traveled road segments from raw GPS trajectories on a digital road network is known as the Map Matching. Map Matching becomes a challenging problem when the sparse geo-temporal data set is noisy (e.g., 10 meters away from the actual location) and has a low sampling rate (e.g., one da...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Control, Decision and Information Technologies (Online) Vol. 1; pp. 1081 - 1086
Main Authors Nadeeshan, Sudeepa, Perera, Amal Shehan
Format Conference Proceeding
LanguageEnglish
Published IEEE 29.06.2020
Subjects
Online AccessGet full text
ISSN2576-3555
DOI10.1109/CoDIT49905.2020.9263797

Cover

Abstract Identifying the traveled road segments from raw GPS trajectories on a digital road network is known as the Map Matching. Map Matching becomes a challenging problem when the sparse geo-temporal data set is noisy (e.g., 10 meters away from the actual location) and has a low sampling rate (e.g., one data point per 3 minutes). The public transportation domain (e.g., buses) differs from the generic transportation (e.g., taxis) as it follows a predefined route, and that helps to build the ground truth trajectories. Ground truth trajectories are essential to validate the map-matching algorithms. There are many advanced map matching algorithms, but they are focused on the generic map matching problem. We propose an improvement to the existing Hidden Markov Model (HMM) map matching methodology to find the most likely road route considering the probability of the bus being on the predefined route. The proposed algorithm is validated using simulated GPS data in a dense road network with different noises and sample rates. Finally, the results are compared with the existing HMM solution using Route Mismatched Fraction (RMF).
AbstractList Identifying the traveled road segments from raw GPS trajectories on a digital road network is known as the Map Matching. Map Matching becomes a challenging problem when the sparse geo-temporal data set is noisy (e.g., 10 meters away from the actual location) and has a low sampling rate (e.g., one data point per 3 minutes). The public transportation domain (e.g., buses) differs from the generic transportation (e.g., taxis) as it follows a predefined route, and that helps to build the ground truth trajectories. Ground truth trajectories are essential to validate the map-matching algorithms. There are many advanced map matching algorithms, but they are focused on the generic map matching problem. We propose an improvement to the existing Hidden Markov Model (HMM) map matching methodology to find the most likely road route considering the probability of the bus being on the predefined route. The proposed algorithm is validated using simulated GPS data in a dense road network with different noises and sample rates. Finally, the results are compared with the existing HMM solution using Route Mismatched Fraction (RMF).
Author Nadeeshan, Sudeepa
Perera, Amal Shehan
Author_xml – sequence: 1
  givenname: Sudeepa
  surname: Nadeeshan
  fullname: Nadeeshan, Sudeepa
  email: sudeepa.14@cse.mrt.ac.lk
  organization: University of Moratuwa,Department of Computer Science and Engineering,Sri Lanka
– sequence: 2
  givenname: Amal Shehan
  surname: Perera
  fullname: Perera, Amal Shehan
  email: shehan@cse.mrt.ac.lk
  organization: University of Moratuwa,Department of Computer Science and Engineering,Sri Lanka
BookMark eNotkM1OAjEYAKvRRMR9Ag_2AVz82m5pvyNZfiRBIRHPpN3tQg1ssVtieHtN5DCZ2xzmnty0oXWEPDEYMAb4UobxfF0gghxw4DBAPhQK1RXJUGmmuGYSpcBr0uNSDXMhpbwjWdd9AYBgCMB5jyxH9M0c_0jVzrdbOtpvQ_Rpd6BNiPQ9-O78TBfhh06j-z65NtHVye59RdfRtN0xxGSSDy2drT7o2CTzQG4bs-9cdnGffE4n6_I1Xyxn83K0yD0HkXJVILNSNkNbFcbaBoytLXOutpXl3GClDaDTUglpK9RotOYKi6bBWnMUVvTJ43_XO-c2x-gPJp43lwXiF-qiUqs
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CoDIT49905.2020.9263797
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781728159539
1728159539
EISSN 2576-3555
EndPage 1086
ExternalDocumentID 9263797
Genre orig-research
GrantInformation_xml – fundername: Ministry of Higher Education
  funderid: 10.13039/501100002385
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-7491b55f6bc4abbf0abdb1eedbcb22a9c8a09e85735bc989a882794ff9d8293b3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:28:28 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-7491b55f6bc4abbf0abdb1eedbcb22a9c8a09e85735bc989a882794ff9d8293b3
PageCount 6
ParticipantIDs ieee_primary_9263797
PublicationCentury 2000
PublicationDate 2020-June-29
PublicationDateYYYYMMDD 2020-06-29
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-June-29
  day: 29
PublicationDecade 2020
PublicationTitle International Conference on Control, Decision and Information Technologies (Online)
PublicationTitleAbbrev CoDIT
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003190022
Score 1.7297115
Snippet Identifying the traveled road segments from raw GPS trajectories on a digital road network is known as the Map Matching. Map Matching becomes a challenging...
SourceID ieee
SourceType Publisher
StartPage 1081
SubjectTerms Bus
Global Positioning System
Hidden Markov model
Hidden Markov models
Map-matching
Noise measurement
Public transportation
Roads
Trajectory
Weight measurement
Title A Map Matching Algorithm for Noisy, Low Frequent Public Transportation GPS Data
URI https://ieeexplore.ieee.org/document/9263797
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-AkydUMH6nB49sdFu3tkcCIhpBEiHhRtquU4IygiVG_3rbbcxoPHhY0izpR_ravl9ff-89AK5wwG3aI-kg7CUOjgl3uMCBI7ikIcJEJsx6Iw9H0WCK72bhrAJapS-MUiojnynXFrO3_DiVW2sqazM_CggjVVAlNMp9tUp7illKVh8VFC4PsXY37d1ODKBHobkG-sgtav9Io5JpkX4dDHf95-SRpbvVwpWfv0Iz_neA-6D57a8Hx6UmOgAVtToE9V3CBljs3wZ46MAhX5tPZwxK2Hl5SjcL_fwKDXSFo3Tx9tGC9-k77G8yhrWGuVUPliHQMznCm_Ej7HHNm2Dav550B06RUcFZ-CjQDsHME2GYREJiLkSCuIiFZwYnpPB9ziTliCkakiAUklHGDf42GzZJWEwNLhDBEait0pU6BtAclBFFGPue4Fh6lDLTCsYkNvdcA0OSE9Cw8zNf50Ez5sXUnP79-wzsWRlZDpbPzkFNb7bqwmh7LS4zMX8BzJGpjQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_DIoNvabT0SEEEZkggJN9J2nRKVESwx-tfbbmNG48HDkmbJmpe-vr2vr997D4Ar7DLT9khYCNuxhSOfWYxj1-JMBARhX8TUZCOHQ683wbdTMi2BepELI6VMyWeyYYbpXX6UiLUJlTWp47k-9bfANsEYkyxbq4io6M1kPFJO4rIRbbaTTn-sIT0i-iDooEb-_Y9GKqkf6VZAuJEgo488N9aKN8Tnr-KM_xVxD9S-M_bgqPBF-6AkFwegsmnZAHMLroL7FgzZUj8q5VDC1stjspqrp1eowSscJvO3jzocJO-wu0o51gpmcT1YFEFPNQlvRg-wwxSrgUn3etzuWXlPBWvuIFdZPqY2JyT2uMCM8xgxHnFbC8cFdxxGRcAQlQHxXcIFDSjTCFybbBzTKNDIgLuHoLxIFvIIQP2r9AKEsWNzhoUdBFTPgrEf6ZOuBiLxMaia9Zkts7IZs3xpTv5-fQl2euNwMBv0h3enYNfoyzCyHHoGymq1lufa9yt-kar8C92orNo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Control%2C+Decision+and+Information+Technologies+%28Online%29&rft.atitle=A+Map+Matching+Algorithm+for+Noisy%2C+Low+Frequent+Public+Transportation+GPS+Data&rft.au=Nadeeshan%2C+Sudeepa&rft.au=Perera%2C+Amal+Shehan&rft.date=2020-06-29&rft.pub=IEEE&rft.eissn=2576-3555&rft.volume=1&rft.spage=1081&rft.epage=1086&rft_id=info:doi/10.1109%2FCoDIT49905.2020.9263797&rft.externalDocID=9263797