A Map Matching Algorithm for Noisy, Low Frequent Public Transportation GPS Data
Identifying the traveled road segments from raw GPS trajectories on a digital road network is known as the Map Matching. Map Matching becomes a challenging problem when the sparse geo-temporal data set is noisy (e.g., 10 meters away from the actual location) and has a low sampling rate (e.g., one da...
Saved in:
| Published in | International Conference on Control, Decision and Information Technologies (Online) Vol. 1; pp. 1081 - 1086 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
29.06.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2576-3555 |
| DOI | 10.1109/CoDIT49905.2020.9263797 |
Cover
| Abstract | Identifying the traveled road segments from raw GPS trajectories on a digital road network is known as the Map Matching. Map Matching becomes a challenging problem when the sparse geo-temporal data set is noisy (e.g., 10 meters away from the actual location) and has a low sampling rate (e.g., one data point per 3 minutes). The public transportation domain (e.g., buses) differs from the generic transportation (e.g., taxis) as it follows a predefined route, and that helps to build the ground truth trajectories. Ground truth trajectories are essential to validate the map-matching algorithms. There are many advanced map matching algorithms, but they are focused on the generic map matching problem. We propose an improvement to the existing Hidden Markov Model (HMM) map matching methodology to find the most likely road route considering the probability of the bus being on the predefined route. The proposed algorithm is validated using simulated GPS data in a dense road network with different noises and sample rates. Finally, the results are compared with the existing HMM solution using Route Mismatched Fraction (RMF). |
|---|---|
| AbstractList | Identifying the traveled road segments from raw GPS trajectories on a digital road network is known as the Map Matching. Map Matching becomes a challenging problem when the sparse geo-temporal data set is noisy (e.g., 10 meters away from the actual location) and has a low sampling rate (e.g., one data point per 3 minutes). The public transportation domain (e.g., buses) differs from the generic transportation (e.g., taxis) as it follows a predefined route, and that helps to build the ground truth trajectories. Ground truth trajectories are essential to validate the map-matching algorithms. There are many advanced map matching algorithms, but they are focused on the generic map matching problem. We propose an improvement to the existing Hidden Markov Model (HMM) map matching methodology to find the most likely road route considering the probability of the bus being on the predefined route. The proposed algorithm is validated using simulated GPS data in a dense road network with different noises and sample rates. Finally, the results are compared with the existing HMM solution using Route Mismatched Fraction (RMF). |
| Author | Nadeeshan, Sudeepa Perera, Amal Shehan |
| Author_xml | – sequence: 1 givenname: Sudeepa surname: Nadeeshan fullname: Nadeeshan, Sudeepa email: sudeepa.14@cse.mrt.ac.lk organization: University of Moratuwa,Department of Computer Science and Engineering,Sri Lanka – sequence: 2 givenname: Amal Shehan surname: Perera fullname: Perera, Amal Shehan email: shehan@cse.mrt.ac.lk organization: University of Moratuwa,Department of Computer Science and Engineering,Sri Lanka |
| BookMark | eNotkM1OAjEYAKvRRMR9Ag_2AVz82m5pvyNZfiRBIRHPpN3tQg1ssVtieHtN5DCZ2xzmnty0oXWEPDEYMAb4UobxfF0gghxw4DBAPhQK1RXJUGmmuGYSpcBr0uNSDXMhpbwjWdd9AYBgCMB5jyxH9M0c_0jVzrdbOtpvQ_Rpd6BNiPQ9-O78TBfhh06j-z65NtHVye59RdfRtN0xxGSSDy2drT7o2CTzQG4bs-9cdnGffE4n6_I1Xyxn83K0yD0HkXJVILNSNkNbFcbaBoytLXOutpXl3GClDaDTUglpK9RotOYKi6bBWnMUVvTJ43_XO-c2x-gPJp43lwXiF-qiUqs |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CoDIT49905.2020.9263797 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781728159539 1728159539 |
| EISSN | 2576-3555 |
| EndPage | 1086 |
| ExternalDocumentID | 9263797 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ministry of Higher Education funderid: 10.13039/501100002385 |
| GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i203t-7491b55f6bc4abbf0abdb1eedbcb22a9c8a09e85735bc989a882794ff9d8293b3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:28:28 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-7491b55f6bc4abbf0abdb1eedbcb22a9c8a09e85735bc989a882794ff9d8293b3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9263797 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-June-29 |
| PublicationDateYYYYMMDD | 2020-06-29 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-June-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationTitle | International Conference on Control, Decision and Information Technologies (Online) |
| PublicationTitleAbbrev | CoDIT |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003190022 |
| Score | 1.7297115 |
| Snippet | Identifying the traveled road segments from raw GPS trajectories on a digital road network is known as the Map Matching. Map Matching becomes a challenging... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1081 |
| SubjectTerms | Bus Global Positioning System Hidden Markov model Hidden Markov models Map-matching Noise measurement Public transportation Roads Trajectory Weight measurement |
| Title | A Map Matching Algorithm for Noisy, Low Frequent Public Transportation GPS Data |
| URI | https://ieeexplore.ieee.org/document/9263797 |
| Volume | 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-AkydUMH6nB49sdFu3tkcCIhpBEiHhRtquU4IygiVG_3rbbcxoPHhY0izpR_ravl9ff-89AK5wwG3aI-kg7CUOjgl3uMCBI7ikIcJEJsx6Iw9H0WCK72bhrAJapS-MUiojnynXFrO3_DiVW2sqazM_CggjVVAlNMp9tUp7illKVh8VFC4PsXY37d1ODKBHobkG-sgtav9Io5JpkX4dDHf95-SRpbvVwpWfv0Iz_neA-6D57a8Hx6UmOgAVtToE9V3CBljs3wZ46MAhX5tPZwxK2Hl5SjcL_fwKDXSFo3Tx9tGC9-k77G8yhrWGuVUPliHQMznCm_Ej7HHNm2Dav550B06RUcFZ-CjQDsHME2GYREJiLkSCuIiFZwYnpPB9ziTliCkakiAUklHGDf42GzZJWEwNLhDBEait0pU6BtAclBFFGPue4Fh6lDLTCsYkNvdcA0OSE9Cw8zNf50Ez5sXUnP79-wzsWRlZDpbPzkFNb7bqwmh7LS4zMX8BzJGpjQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_DIoNvabT0SEEEZkggJN9J2nRKVESwx-tfbbmNG48HDkmbJmpe-vr2vr997D4Ar7DLT9khYCNuxhSOfWYxj1-JMBARhX8TUZCOHQ683wbdTMi2BepELI6VMyWeyYYbpXX6UiLUJlTWp47k-9bfANsEYkyxbq4io6M1kPFJO4rIRbbaTTn-sIT0i-iDooEb-_Y9GKqkf6VZAuJEgo488N9aKN8Tnr-KM_xVxD9S-M_bgqPBF-6AkFwegsmnZAHMLroL7FgzZUj8q5VDC1stjspqrp1eowSscJvO3jzocJO-wu0o51gpmcT1YFEFPNQlvRg-wwxSrgUn3etzuWXlPBWvuIFdZPqY2JyT2uMCM8xgxHnFbC8cFdxxGRcAQlQHxXcIFDSjTCFybbBzTKNDIgLuHoLxIFvIIQP2r9AKEsWNzhoUdBFTPgrEf6ZOuBiLxMaia9Zkts7IZs3xpTv5-fQl2euNwMBv0h3enYNfoyzCyHHoGymq1lufa9yt-kar8C92orNo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Control%2C+Decision+and+Information+Technologies+%28Online%29&rft.atitle=A+Map+Matching+Algorithm+for+Noisy%2C+Low+Frequent+Public+Transportation+GPS+Data&rft.au=Nadeeshan%2C+Sudeepa&rft.au=Perera%2C+Amal+Shehan&rft.date=2020-06-29&rft.pub=IEEE&rft.eissn=2576-3555&rft.volume=1&rft.spage=1081&rft.epage=1086&rft_id=info:doi/10.1109%2FCoDIT49905.2020.9263797&rft.externalDocID=9263797 |