Research of INS/CNS/SMN Adaptive Integrated Navigation Algorithm for Sea Area
In this paper, a novel INS/CNS/SMN adaptive integrated navigation algorithm is proposed for long term and high precision navigation in sea area. The structure of INS/CNS/SMN integrated navigation system is established in the algorithm. The cloud and fog model in the Nanhai Sea area is constructed fo...
Saved in:
| Published in | Chinese Control Conference pp. 3368 - 3373 |
|---|---|
| Main Authors | , , , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
Technical Committee on Control Theory, Chinese Association of Automation
26.07.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1934-1768 |
| DOI | 10.23919/CCC52363.2021.9549635 |
Cover
| Abstract | In this paper, a novel INS/CNS/SMN adaptive integrated navigation algorithm is proposed for long term and high precision navigation in sea area. The structure of INS/CNS/SMN integrated navigation system is established in the algorithm. The cloud and fog model in the Nanhai Sea area is constructed for CNS availability. The three types of sea area landmarks are defined, and the corresponding matching methods and strategies of these landmarks are given. At the same time, an automatic classification model of sea area landmarks based on SVM is also designed. The INS/CNS/SMN adaptive integrated navigation algorithm in sea area is simulated and verified in different altitudes and trajectories. The results show that CNS and SMN can adaptively help INS for long term and high precision navigation. |
|---|---|
| AbstractList | In this paper, a novel INS/CNS/SMN adaptive integrated navigation algorithm is proposed for long term and high precision navigation in sea area. The structure of INS/CNS/SMN integrated navigation system is established in the algorithm. The cloud and fog model in the Nanhai Sea area is constructed for CNS availability. The three types of sea area landmarks are defined, and the corresponding matching methods and strategies of these landmarks are given. At the same time, an automatic classification model of sea area landmarks based on SVM is also designed. The INS/CNS/SMN adaptive integrated navigation algorithm in sea area is simulated and verified in different altitudes and trajectories. The results show that CNS and SMN can adaptively help INS for long term and high precision navigation. |
| Author | Dai, Li Liu, Nan Tian, Zhaoxu Yao, Shun Zhuang, Ruowang Cheng, Yongmei Bai, Weijin |
| Author_xml | – sequence: 1 givenname: Zhaoxu surname: Tian fullname: Tian, Zhaoxu email: tianzx1991@mail.nwpu.edu.cn organization: Northwestern Polytechnical University,College of Automation,Xi'an,710129 – sequence: 2 givenname: Yongmei surname: Cheng fullname: Cheng, Yongmei organization: Northwestern Polytechnical University,College of Automation,Xi'an,710129 – sequence: 3 givenname: Nan surname: Liu fullname: Liu, Nan organization: Northwestern Polytechnical University,College of Automation,Xi'an,710129 – sequence: 4 givenname: Shun surname: Yao fullname: Yao, Shun organization: Northwestern Polytechnical University,College of Automation,Xi'an,710129 – sequence: 5 givenname: Weijin surname: Bai fullname: Bai, Weijin email: 1831194177@qq.com organization: Texas Instruments,Shanghai,200120 – sequence: 6 givenname: Ruowang surname: Zhuang fullname: Zhuang, Ruowang email: 2336948023@qq.com organization: Shanghai Electro-Mechanical Engineering Institute,Shanghai,201109 – sequence: 7 givenname: Li surname: Dai fullname: Dai, Li organization: Shanghai Electro-Mechanical Engineering Institute,Shanghai,201109 |
| BookMark | eNotj91Kw0AUhFdRsKk-gSD7Aml39ySb3csQ_Am0EYxelxP3JF1pk7IJBd_egL0YZvgGBiZiN_3QE2NPUqwUWGnXRVGkCjSslFByZdPEakivWGSNkakGI-Q1W0gLSSwzbe5YNI4_QmhhJSzY9oNGwvC950PLy6peF7PqbcVzh6fJn4mX_URdwIkcr_DsO5z80PP80A3BT_sjb4fAa0KeB8J7dtviYaSHiy_Z18vzZ_EWb95fyyLfxF4JmOJMiQTIINhMGZdlOEdyRpHIQLdJK5RzhMrqpJk7NwOTNLJpFGolhUZYssf_XU9Eu1PwRwy_u8t1-ANZWE5a |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.23919/CCC52363.2021.9549635 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9881563801 9789881563804 |
| EISSN | 1934-1768 |
| EndPage | 3373 |
| ExternalDocumentID | 9549635 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
| GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i203t-72043e8a39728d77a8a3ed82e0736f4f02ddea2964b7a8d4f084b1bb2a62106a3 |
| IEDL.DBID | RIE |
| IngestDate | Mon Mar 24 11:57:44 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-72043e8a39728d77a8a3ed82e0736f4f02ddea2964b7a8d4f084b1bb2a62106a3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9549635 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-July-26 |
| PublicationDateYYYYMMDD | 2021-07-26 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-July-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationTitle | Chinese Control Conference |
| PublicationTitleAbbrev | CCC |
| PublicationYear | 2021 |
| Publisher | Technical Committee on Control Theory, Chinese Association of Automation |
| Publisher_xml | – name: Technical Committee on Control Theory, Chinese Association of Automation |
| SSID | ssj0060913 |
| Score | 2.154188 |
| Snippet | In this paper, a novel INS/CNS/SMN adaptive integrated navigation algorithm is proposed for long term and high precision navigation in sea area. The structure... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 3368 |
| SubjectTerms | Adaptation models Adaptive systems automatic classification model Classification algorithms cloud and fog model Integrated navigation Navigation sea area landmarks Simulation Support vector machines Trajectory |
| Title | Research of INS/CNS/SMN Adaptive Integrated Navigation Algorithm for Sea Area |
| URI | https://ieeexplore.ieee.org/document/9549635 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH9sO-nFj010fpCDR9u1aZumx1EcU-gQ5mC3kTSpDrUdo_PgX-9Lu84PPHgohISQkpD3kfd-vwdw7UUqY4GmFtrSnuWjRrZEpoSFnoMbpVq5PDXg5GTCxjP_fh7MW3Czw8JoravkM22bZhXLV0W6MU9lAxOSQgXZhnbIWY3VaqQuM_yWNQKYepEbDeI4Rh-LeegCUtfezvxRQqXSIKMDSJq168SRF3tTSjv9-EXL-N-fO4TeF1aPPOy00BG0dH4M-99oBruQNOl1pMgIeuuDGL9pMiFDJVZG3JG7hjRCkYl4r1g3ipwMX5-K9bJ8fiNo2ZKpFmSIJmYPZqPbx3hsbcsoWEvqeKVlytB4mgu0PChXYSiwqRWnGm83y_zMoSjihAm_ShxT2MF96UpJBUN_kAnvBDp5ketTINLc7yCTqeGBcyIZha5kLFN-4EvuOvwMumZjFquaKWOx3ZP-393nsGcOx7yUUnYBnXK90Zeo4kt5VZ3tJ6zqpEM |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPKgXP8D4bQ8eHbCuK9uRLBJQRkyAhBtp106JuhEyPPjX-7ox_IgHD0uaNk2XNn0ffe_3ewA3jq9i7mpqoS3tWAw1siViJSz0HGw_0sr2IgNODoe8N2H3U3dagdsNFkZrnSef6YZp5rF8lUYr81TWNCEpVJBbsO0yxtwCrVXKXW4YLgsMMHV8228GQYBeFnfQCaR2Yz33RxGVXId09yEsVy9SR14aq0w2oo9fxIz__b0DqH-h9cjjRg8dQkUnR7D3jWiwBmGZYEfSmKC_3gzwG4VD0lFiYQQe6Ze0EYoMxXvOu5EmpPP6lC7n2fMbQduWjLQgHTQy6zDp3o2DnrUupGDNacvJLFOIxtGeQNuDeqrdFtjUyqMa7zePWdyiKOSECcBKHFPY4TFpS0kFR4-QC-cYqkma6BMg0txwN5aRYYJr-dJv25LzWDGXSc9ueadQMxszWxRcGbP1npz93X0NO71xOJgN-sOHc9g1B2XeTSm_gGq2XOlLVPiZvMrP-RN6MqeQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Chinese+Control+Conference&rft.atitle=Research+of+INS%2FCNS%2FSMN+Adaptive+Integrated+Navigation+Algorithm+for+Sea+Area&rft.au=Tian%2C+Zhaoxu&rft.au=Cheng%2C+Yongmei&rft.au=Liu%2C+Nan&rft.au=Yao%2C+Shun&rft.date=2021-07-26&rft.pub=Technical+Committee+on+Control+Theory%2C+Chinese+Association+of+Automation&rft.eissn=1934-1768&rft.spage=3368&rft.epage=3373&rft_id=info:doi/10.23919%2FCCC52363.2021.9549635&rft.externalDocID=9549635 |