A Python Code For Maximum Likelihood Estimation Of The Location And Scale Parameters Of The Truncated Normal Distribution
Extracellular neural recordings obtained from chronically implanted microelectrode arrays are widely used in behavioral neurophysiology and invasive brain-machine interfaces. After the raw recordings are band-pass filtered within a frequency band suitable for spike detection, spikes are often detect...
Saved in:
| Published in | Medical Technologies National Congress (Online) pp. 1 - 4 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
04.11.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2687-7783 |
| DOI | 10.1109/TIPTEKNO53239.2021.9632955 |
Cover
| Abstract | Extracellular neural recordings obtained from chronically implanted microelectrode arrays are widely used in behavioral neurophysiology and invasive brain-machine interfaces. After the raw recordings are band-pass filtered within a frequency band suitable for spike detection, spikes are often detected by amplitude thresholding. Developing principled methods for computing amplitude thresholds is an active research area. 'Truncation thresholds' are a pair of amplitude thresholds that are computed using a recently proposed algorithm. As part of an effort that aims to integrate this algorithm into a real-time data acquisition and spike detection system, here we present a Python code for maximum likelihood estimation of the location and scale parameters of the truncated Normal distribution, which is one of the steps involved in the computation of truncation thresholds. |
|---|---|
| AbstractList | Extracellular neural recordings obtained from chronically implanted microelectrode arrays are widely used in behavioral neurophysiology and invasive brain-machine interfaces. After the raw recordings are band-pass filtered within a frequency band suitable for spike detection, spikes are often detected by amplitude thresholding. Developing principled methods for computing amplitude thresholds is an active research area. 'Truncation thresholds' are a pair of amplitude thresholds that are computed using a recently proposed algorithm. As part of an effort that aims to integrate this algorithm into a real-time data acquisition and spike detection system, here we present a Python code for maximum likelihood estimation of the location and scale parameters of the truncated Normal distribution, which is one of the steps involved in the computation of truncation thresholds. |
| Author | Ogutcen, Melih Yilmaz Kocaturk, Mehmet Okatan, Murat |
| Author_xml | – sequence: 1 givenname: Melih Yilmaz surname: Ogutcen fullname: Ogutcen, Melih Yilmaz email: ogutcen20@itu.edu.tr organization: Informatics Institute Istanbul Technical University,Istanbul,Turkey – sequence: 2 givenname: Mehmet surname: Kocaturk fullname: Kocaturk, Mehmet email: mkocaturk@medipol.edu.tr organization: Istanbul Medipol University,Department of Biomedical Engineering,Istanbul,Turkey – sequence: 3 givenname: Murat surname: Okatan fullname: Okatan, Murat email: okatan@itu.edu.tr organization: Informatics Institute Istanbul Technical University,Istanbul,Turkey |
| BookMark | eNo1kEtPwkAUhUejiYj8AjcT98V5dF5LgqDECiTWNZkyt2G07Zhpm8i_twZcnZyT79zknlt01YQGEHqgZEopMY_5apsvXtcbwRk3U0YYnRrJmRHiAk2M0lRKkXI5RJdoxKRWiVKa36BJ234SQpigA8xH6DjD22N3CA2eBwd4GSJ-sz--7muc-S-o_CEEhxdt52vb-QHblDg_AM7C_uRnjcPve1sB3tpoa-ggtv9QHvtmwMDhdYi1rfCTb7voi_6veYeuS1u1MDnrGH0sF_n8Jck2z6v5LEs8I7xLFKXCWGmMtpoxrcpUpg4sVcpwp7UtGKOca8pJsZdOc2GlSi2ALJmT0hZ8jO5Pdz0A7L7j8Eg87s5j8V9ITmFM |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/TIPTEKNO53239.2021.9632955 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665436632 1665436638 |
| EISSN | 2687-7783 |
| EndPage | 4 |
| ExternalDocumentID | 9632955 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i203t-71159a6998a82287f464dea17793d88ab221338130bc6d835a674aee6f2d66ab3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 05:09:19 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-71159a6998a82287f464dea17793d88ab221338130bc6d835a674aee6f2d66ab3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_9632955 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Nov.-4 |
| PublicationDateYYYYMMDD | 2021-11-04 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-Nov.-4 day: 04 |
| PublicationDecade | 2020 |
| PublicationTitle | Medical Technologies National Congress (Online) |
| PublicationTitleAbbrev | TIPTEKNO |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002513293 |
| Score | 1.7780932 |
| Snippet | Extracellular neural recordings obtained from chronically implanted microelectrode arrays are widely used in behavioral neurophysiology and invasive... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Band-pass filters Codes Filtering algorithms Gaussian distribution Maximum likelihood estimation Microelectrodes python code Real-time systems truncated Normal distribution truncation thresholds |
| Title | A Python Code For Maximum Likelihood Estimation Of The Location And Scale Parameters Of The Truncated Normal Distribution |
| URI | https://ieeexplore.ieee.org/document/9632955 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pa4MwFA5tTzttox37TQ47TqsxRj2WrqXb-gtmobcSkydIWx1FYd1fv0Rtx8YOu4mGEJIX3vee7_seQg9cUBZzaRmECqICFCmNAGJHpzlkqW_uEs13nkzZaEFflu6ygR6PXBgAKIvPwNSP5b98mYlCp8q6ylhI4LpN1PR8VnG1jvkU5afVR6fWFbWtoBs-z8PB63TmOqSkpBDbrCf40UmldCTDUzQ5LKGqH1mbRR6Z4vOXOuN_13iGOt-UPTw_OqNz1IC0jfY9PN9rcQDczyTgYbbDE_6RbIstHidr2CRa0xgP1C2vCIx4FmNlN3icVYk83EslflOnqObmuopLS3EeBoW7QgvKgsRTjXs3-Elr8NbtszpoMRyE_ZFR91owEmI5ueEpZBhwpoIvriCD78WUUQnc9tT9lb7PI0J0NKs8XiSYVLCNM49yABYTyRiPnAvUSrMULhEWlgcgVLQbeT7lIuaMUxssIsCWgR_IK9TW27Z6r-Q0VvWOXf_9-gad6KMr6X_0FrXyXQF3Cgfk0X1pAF803bLy |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRwdZ13XYkCAFhg8SRcCNd-5YQfswQloh_ve02MBoP3pataZr2Ne97b-_7HkJPXFCWcGkahAqiAhQpDR8SW6c5ZK5v7hDNdw5C1pvQ16kzraDnAxcGAPLiM2jox_xfvkxFplNlTWUsxHecI3TsUEqdgq11yKgoT60-26WyqGX6zag_jjqDcOTYJCelEKtRTvGjl0ruSrpnKNgvoqggWTSybdwQn7_0Gf-7ynNU_ybt4fHBHV2gCqxraNfC452WB8DtVALuphsc8I_5Klvh4XwBy7lWNcYddc8LCiMeJVhZDh6mRSoPt9YSv6lzVHNzXcelxTj3g6JNpiVlQeJQI98lftEqvGUDrTqadDtRu2eU3RaMOTHtreEqbOhzpsIvrkCD5yaUUQncctUNlp7HY0J0PKt8XiyYVMCNM5dyAJYQyRiP7UtUXadruEJYmC6AUPFu7HqUi4QzTi0wiQBL-p4vr1FNb9vsvRDUmJU7dvP360d00ouC4WzYDwe36FQfY04GpHeout1kcK9QwTZ-yI3hC8Dmtj8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Medical+Technologies+National+Congress+%28Online%29&rft.atitle=A+Python+Code+For+Maximum+Likelihood+Estimation+Of+The+Location+And+Scale+Parameters+Of+The+Truncated+Normal+Distribution&rft.au=Ogutcen%2C+Melih+Yilmaz&rft.au=Kocaturk%2C+Mehmet&rft.au=Okatan%2C+Murat&rft.date=2021-11-04&rft.pub=IEEE&rft.eissn=2687-7783&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FTIPTEKNO53239.2021.9632955&rft.externalDocID=9632955 |