A Python Code For Maximum Likelihood Estimation Of The Location And Scale Parameters Of The Truncated Normal Distribution

Extracellular neural recordings obtained from chronically implanted microelectrode arrays are widely used in behavioral neurophysiology and invasive brain-machine interfaces. After the raw recordings are band-pass filtered within a frequency band suitable for spike detection, spikes are often detect...

Full description

Saved in:
Bibliographic Details
Published inMedical Technologies National Congress (Online) pp. 1 - 4
Main Authors Ogutcen, Melih Yilmaz, Kocaturk, Mehmet, Okatan, Murat
Format Conference Proceeding
LanguageEnglish
Published IEEE 04.11.2021
Subjects
Online AccessGet full text
ISSN2687-7783
DOI10.1109/TIPTEKNO53239.2021.9632955

Cover

Abstract Extracellular neural recordings obtained from chronically implanted microelectrode arrays are widely used in behavioral neurophysiology and invasive brain-machine interfaces. After the raw recordings are band-pass filtered within a frequency band suitable for spike detection, spikes are often detected by amplitude thresholding. Developing principled methods for computing amplitude thresholds is an active research area. 'Truncation thresholds' are a pair of amplitude thresholds that are computed using a recently proposed algorithm. As part of an effort that aims to integrate this algorithm into a real-time data acquisition and spike detection system, here we present a Python code for maximum likelihood estimation of the location and scale parameters of the truncated Normal distribution, which is one of the steps involved in the computation of truncation thresholds.
AbstractList Extracellular neural recordings obtained from chronically implanted microelectrode arrays are widely used in behavioral neurophysiology and invasive brain-machine interfaces. After the raw recordings are band-pass filtered within a frequency band suitable for spike detection, spikes are often detected by amplitude thresholding. Developing principled methods for computing amplitude thresholds is an active research area. 'Truncation thresholds' are a pair of amplitude thresholds that are computed using a recently proposed algorithm. As part of an effort that aims to integrate this algorithm into a real-time data acquisition and spike detection system, here we present a Python code for maximum likelihood estimation of the location and scale parameters of the truncated Normal distribution, which is one of the steps involved in the computation of truncation thresholds.
Author Ogutcen, Melih Yilmaz
Kocaturk, Mehmet
Okatan, Murat
Author_xml – sequence: 1
  givenname: Melih Yilmaz
  surname: Ogutcen
  fullname: Ogutcen, Melih Yilmaz
  email: ogutcen20@itu.edu.tr
  organization: Informatics Institute Istanbul Technical University,Istanbul,Turkey
– sequence: 2
  givenname: Mehmet
  surname: Kocaturk
  fullname: Kocaturk, Mehmet
  email: mkocaturk@medipol.edu.tr
  organization: Istanbul Medipol University,Department of Biomedical Engineering,Istanbul,Turkey
– sequence: 3
  givenname: Murat
  surname: Okatan
  fullname: Okatan, Murat
  email: okatan@itu.edu.tr
  organization: Informatics Institute Istanbul Technical University,Istanbul,Turkey
BookMark eNo1kEtPwkAUhUejiYj8AjcT98V5dF5LgqDECiTWNZkyt2G07Zhpm8i_twZcnZyT79zknlt01YQGEHqgZEopMY_5apsvXtcbwRk3U0YYnRrJmRHiAk2M0lRKkXI5RJdoxKRWiVKa36BJ234SQpigA8xH6DjD22N3CA2eBwd4GSJ-sz--7muc-S-o_CEEhxdt52vb-QHblDg_AM7C_uRnjcPve1sB3tpoa-ggtv9QHvtmwMDhdYi1rfCTb7voi_6veYeuS1u1MDnrGH0sF_n8Jck2z6v5LEs8I7xLFKXCWGmMtpoxrcpUpg4sVcpwp7UtGKOca8pJsZdOc2GlSi2ALJmT0hZ8jO5Pdz0A7L7j8Eg87s5j8V9ITmFM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/TIPTEKNO53239.2021.9632955
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665436632
1665436638
EISSN 2687-7783
EndPage 4
ExternalDocumentID 9632955
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-71159a6998a82287f464dea17793d88ab221338130bc6d835a674aee6f2d66ab3
IEDL.DBID RIE
IngestDate Wed Aug 27 05:09:19 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-71159a6998a82287f464dea17793d88ab221338130bc6d835a674aee6f2d66ab3
PageCount 4
ParticipantIDs ieee_primary_9632955
PublicationCentury 2000
PublicationDate 2021-Nov.-4
PublicationDateYYYYMMDD 2021-11-04
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-Nov.-4
  day: 04
PublicationDecade 2020
PublicationTitle Medical Technologies National Congress (Online)
PublicationTitleAbbrev TIPTEKNO
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002513293
Score 1.7780932
Snippet Extracellular neural recordings obtained from chronically implanted microelectrode arrays are widely used in behavioral neurophysiology and invasive...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Band-pass filters
Codes
Filtering algorithms
Gaussian distribution
Maximum likelihood estimation
Microelectrodes
python code
Real-time systems
truncated Normal distribution
truncation thresholds
Title A Python Code For Maximum Likelihood Estimation Of The Location And Scale Parameters Of The Truncated Normal Distribution
URI https://ieeexplore.ieee.org/document/9632955
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pa4MwFA5tTzttox37TQ47TqsxRj2WrqXb-gtmobcSkydIWx1FYd1fv0Rtx8YOu4mGEJIX3vee7_seQg9cUBZzaRmECqICFCmNAGJHpzlkqW_uEs13nkzZaEFflu6ygR6PXBgAKIvPwNSP5b98mYlCp8q6ylhI4LpN1PR8VnG1jvkU5afVR6fWFbWtoBs-z8PB63TmOqSkpBDbrCf40UmldCTDUzQ5LKGqH1mbRR6Z4vOXOuN_13iGOt-UPTw_OqNz1IC0jfY9PN9rcQDczyTgYbbDE_6RbIstHidr2CRa0xgP1C2vCIx4FmNlN3icVYk83EslflOnqObmuopLS3EeBoW7QgvKgsRTjXs3-Elr8NbtszpoMRyE_ZFR91owEmI5ueEpZBhwpoIvriCD78WUUQnc9tT9lb7PI0J0NKs8XiSYVLCNM49yABYTyRiPnAvUSrMULhEWlgcgVLQbeT7lIuaMUxssIsCWgR_IK9TW27Z6r-Q0VvWOXf_9-gad6KMr6X_0FrXyXQF3Cgfk0X1pAF803bLy
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRwdZ13XYkCAFhg8SRcCNd-5YQfswQloh_ve02MBoP3pataZr2Ne97b-_7HkJPXFCWcGkahAqiAhQpDR8SW6c5ZK5v7hDNdw5C1pvQ16kzraDnAxcGAPLiM2jox_xfvkxFplNlTWUsxHecI3TsUEqdgq11yKgoT60-26WyqGX6zag_jjqDcOTYJCelEKtRTvGjl0ruSrpnKNgvoqggWTSybdwQn7_0Gf-7ynNU_ybt4fHBHV2gCqxraNfC452WB8DtVALuphsc8I_5Klvh4XwBy7lWNcYddc8LCiMeJVhZDh6mRSoPt9YSv6lzVHNzXcelxTj3g6JNpiVlQeJQI98lftEqvGUDrTqadDtRu2eU3RaMOTHtreEqbOhzpsIvrkCD5yaUUQncctUNlp7HY0J0PKt8XiyYVMCNM5dyAJYQyRiP7UtUXadruEJYmC6AUPFu7HqUi4QzTi0wiQBL-p4vr1FNb9vsvRDUmJU7dvP360d00ouC4WzYDwe36FQfY04GpHeout1kcK9QwTZ-yI3hC8Dmtj8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Medical+Technologies+National+Congress+%28Online%29&rft.atitle=A+Python+Code+For+Maximum+Likelihood+Estimation+Of+The+Location+And+Scale+Parameters+Of+The+Truncated+Normal+Distribution&rft.au=Ogutcen%2C+Melih+Yilmaz&rft.au=Kocaturk%2C+Mehmet&rft.au=Okatan%2C+Murat&rft.date=2021-11-04&rft.pub=IEEE&rft.eissn=2687-7783&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FTIPTEKNO53239.2021.9632955&rft.externalDocID=9632955