Safe Multi-Agent Interaction through Robust Control Barrier Functions with Learned Uncertainties

Robots operating in real world settings must navigate and maintain safety while interacting with many heterogeneous agents and obstacles. Multi-Agent Control Barrier Functions (CBF) have emerged as a computationally efficient tool to guarantee safety in multi-agent environments, but they assume perf...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the IEEE Conference on Decision & Control pp. 777 - 783
Main Authors Cheng, Richard, Khojasteh, Mohammad Javad, Ames, Aaron D., Burdick, Joel W.
Format Conference Proceeding
LanguageEnglish
Published IEEE 14.12.2020
Subjects
Online AccessGet full text
ISSN2576-2370
DOI10.1109/CDC42340.2020.9304395

Cover

Abstract Robots operating in real world settings must navigate and maintain safety while interacting with many heterogeneous agents and obstacles. Multi-Agent Control Barrier Functions (CBF) have emerged as a computationally efficient tool to guarantee safety in multi-agent environments, but they assume perfect knowledge of both the robot dynamics and other agents' dynamics. While knowledge of the robot's dynamics might be reasonably well known, the heterogeneity of agents in real-world environments means there will always be considerable uncertainty in our prediction of other agents' dynamics. This work aims to learn high-confidence bounds for these dynamic uncertainties using Matrix-Variate Gaussian Process models, and incorporates them into a robust multi-agent CBF framework. We transform the resulting min-max robust CBF into a quadratic program, which can be efficiently solved in real time. We verify via simulation results that the nominal multi-agent CBF is often violated during agent interactions, whereas our robust formulation maintains safety with a much higher probability and adapts to learned uncertainties.
AbstractList Robots operating in real world settings must navigate and maintain safety while interacting with many heterogeneous agents and obstacles. Multi-Agent Control Barrier Functions (CBF) have emerged as a computationally efficient tool to guarantee safety in multi-agent environments, but they assume perfect knowledge of both the robot dynamics and other agents' dynamics. While knowledge of the robot's dynamics might be reasonably well known, the heterogeneity of agents in real-world environments means there will always be considerable uncertainty in our prediction of other agents' dynamics. This work aims to learn high-confidence bounds for these dynamic uncertainties using Matrix-Variate Gaussian Process models, and incorporates them into a robust multi-agent CBF framework. We transform the resulting min-max robust CBF into a quadratic program, which can be efficiently solved in real time. We verify via simulation results that the nominal multi-agent CBF is often violated during agent interactions, whereas our robust formulation maintains safety with a much higher probability and adapts to learned uncertainties.
Author Khojasteh, Mohammad Javad
Cheng, Richard
Ames, Aaron D.
Burdick, Joel W.
Author_xml – sequence: 1
  givenname: Richard
  surname: Cheng
  fullname: Cheng, Richard
  email: rcheng@caltech.edu
  organization: California Institute of Technology,Department of Mechanical and Civil Engineering
– sequence: 2
  givenname: Mohammad Javad
  surname: Khojasteh
  fullname: Khojasteh, Mohammad Javad
  email: mjkhojas@caltech.edu
  organization: California Institute of Technology,Department of Electrical Engineering
– sequence: 3
  givenname: Aaron D.
  surname: Ames
  fullname: Ames, Aaron D.
  email: ames@caltech.edu
  organization: California Institute of Technology,Department of Mechanical and Civil Engineering
– sequence: 4
  givenname: Joel W.
  surname: Burdick
  fullname: Burdick, Joel W.
  email: jwb@caltech.edu
  organization: California Institute of Technology,Department of Mechanical and Civil Engineering
BookMark eNotkM1KAzEYAKMo2FafQIS8wNYkX342x7q2WqgIas81Sb9tIzUr2Szi2wva01yGOcyYnKUuISE3nE05Z_a2uW-kAMmmggk2tcAkWHVCxtyImhspDZySkVBGVwIMuyDjvv9gDKyVMCLvr65F-jQcSqxmO0yFLlPB7EKJXaJln7tht6cvnR_6Qpsuldwd6J3LOWKmiyH9eT39jmVPV-hywi1dp4C5uJhKxP6SnLfu0OPVkROyXszfmsdq9fywbGarKgoGpdLoHABTDlB7awC2ioXgDW-Z134rfQChnNLCAq-15kG0PrSKu9pxBjXChFz_dyMibr5y_HT5Z3O8Ab_C21d6
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CDC42340.2020.9304395
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728174473
9781728174471
EISSN 2576-2370
EndPage 783
ExternalDocumentID 9304395
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-6eaa3305a3e6b9733d50ccb71f0b6bd4bc325a5629318661c2fbcf51a8a1038e3
IEDL.DBID RIE
IngestDate Wed Aug 27 06:03:47 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-6eaa3305a3e6b9733d50ccb71f0b6bd4bc325a5629318661c2fbcf51a8a1038e3
PageCount 7
ParticipantIDs ieee_primary_9304395
PublicationCentury 2000
PublicationDate 2020-Dec.-14
PublicationDateYYYYMMDD 2020-12-14
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-Dec.-14
  day: 14
PublicationDecade 2020
PublicationTitle Proceedings of the IEEE Conference on Decision & Control
PublicationTitleAbbrev CDC
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039943
Score 2.1339834
Snippet Robots operating in real world settings must navigate and maintain safety while interacting with many heterogeneous agents and obstacles. Multi-Agent Control...
SourceID ieee
SourceType Publisher
StartPage 777
SubjectTerms Collision avoidance
Gaussian processes
Kernel
Navigation
Robots
Safety
Uncertainty
Title Safe Multi-Agent Interaction through Robust Control Barrier Functions with Learned Uncertainties
URI https://ieeexplore.ieee.org/document/9304395
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELXanuDC0iJ2-cCRpHZsZzlCoKqQQAio1FvxMpYQUotKcuHrsZ20LOLALYoUOfKSN5l57w1CZ0LLzPiCOwHII56YJCqshIhSy6whxu8yz7a4S8cTfjMV0w46X2thACCQzyD2l6GWbxa69qmyYcG8kFN0UTfLikartfrqOpzlrFXoUFIMy6vSBQqcuD_AhMTtgz86qAQAGW2h29XQDW_kNa4rFeuPX66M_323bTT4kurh-zUI7aAOzHfR5jeXwT56fpQWcFDaRhdeSYVDGrBRNOC2UQ9-WKj6vcJlQ13Hl3Lpe9nhkcO9sDWxz9jiYMcKBk_cuIFL4P1YB2gyun4qx1HbWCF6SQirohSkZO6gSwapKjLGjCBaq4xaolJluNIsEdJFRgXzfnhUJ1ZpK6jMpfdTB7aHevPFHPYRBp5xnVMLhhNfqc9NLpUBqVxkI4RSB6jv52r21nhnzNppOvz79hHa8Ovl6SKUH6NetazhxIF-pU7Dan8CFimuTw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKOQAXloLY8YEjSZ3YznKEQFWgrRC0Um_Fy0RCSC0qyYWvx3bSsogDtyhS5Mgee8Yz771B6JwrEWtbcCcAicdCHXppLsALgpzmmmhrZRZtMYi6I3Y35uMGulhyYQDAgc_At4-ulq9nqrSpsnZKLZGTr6BVbm4VccXWWpy7xtMyWnN0ApK2s-vMhAqMmDtgSPz60x89VJwL6Wyi_mLwCjny6peF9NXHL13G__7dFtr9Iuvhh6Ub2kYNmO6gjW86gy30_CRywI5r611aLhV2icCK04DrVj34cSbL9wJnFXgdX4m57WaHO8bzOePENmeLnSAraDwy4zo0gVVk3UWjzs0w63p1awXvJSS08CIQgpqtLihEMo0p1ZwoJeMgJzKSmklFQy5MbJRSq4gXqDCXKueBSIRVVAe6h5rT2RT2EQYWM5UEOWhGbK0-0YmQGoQ0sQ3nUh6glp2ryVulnjGpp-nw79dnaK077PcmvdvB_RFat2tnwSMBO0bNYl7CiQkBCnnqVv4Ta3ixoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+IEEE+Conference+on+Decision+%26+Control&rft.atitle=Safe+Multi-Agent+Interaction+through+Robust+Control+Barrier+Functions+with+Learned+Uncertainties&rft.au=Cheng%2C+Richard&rft.au=Khojasteh%2C+Mohammad+Javad&rft.au=Ames%2C+Aaron+D.&rft.au=Burdick%2C+Joel+W.&rft.date=2020-12-14&rft.pub=IEEE&rft.eissn=2576-2370&rft.spage=777&rft.epage=783&rft_id=info:doi/10.1109%2FCDC42340.2020.9304395&rft.externalDocID=9304395