Fault Classification on Melamine Faced Panels Using Local Binary Pattern

The wood-based industry is the focus of users that require changes towards a clean industry, environmentally friendly and with efficient use of natural resources. Tasks of inspection and quality control are essential in this scenario. In this work, a dataset with samples obtained from near-infrared...

Full description

Saved in:
Bibliographic Details
Published inProceedings - Brazilian Symposium on Computer Graphics and Image Processing Vol. 1; pp. 222 - 227
Main Authors De Sa, Fernando P. G., Aguilera, Cristhian, Aguilera, Cristhian A., Conci, Aura
Format Conference Proceeding
LanguageEnglish
Published IEEE 24.10.2022
Subjects
Online AccessGet full text
ISSN2377-5416
DOI10.1109/SIBGRAPI55357.2022.9991803

Cover

Abstract The wood-based industry is the focus of users that require changes towards a clean industry, environmentally friendly and with efficient use of natural resources. Tasks of inspection and quality control are essential in this scenario. In this work, a dataset with samples obtained from near-infrared (NIR) image acquisition is used to evaluate the limits of the local binary pattern (LBP) for quality control of melamine board products. Conventional pattern recognition and convolutional neural network (CNN) approaches are compared concerning their use to classify the most common groups of faults present on the plant for the inspection task. The local binary convolutional neural networks (LBCNN) is used for inspecting, in a CNN inspired by the traditional LBP texture descriptor. The work shows that such a reformulation of the standard LBP is very simple and enables similar results. However, the results present better performance when LBP is combined with another type of feature, even only based on intensity. Similar modifications of standard CNN can be tested to promote the development of new CNN models insensible to texture granularity, image resolution, intensity range, and other variations of the acquired samples.
AbstractList The wood-based industry is the focus of users that require changes towards a clean industry, environmentally friendly and with efficient use of natural resources. Tasks of inspection and quality control are essential in this scenario. In this work, a dataset with samples obtained from near-infrared (NIR) image acquisition is used to evaluate the limits of the local binary pattern (LBP) for quality control of melamine board products. Conventional pattern recognition and convolutional neural network (CNN) approaches are compared concerning their use to classify the most common groups of faults present on the plant for the inspection task. The local binary convolutional neural networks (LBCNN) is used for inspecting, in a CNN inspired by the traditional LBP texture descriptor. The work shows that such a reformulation of the standard LBP is very simple and enables similar results. However, the results present better performance when LBP is combined with another type of feature, even only based on intensity. Similar modifications of standard CNN can be tested to promote the development of new CNN models insensible to texture granularity, image resolution, intensity range, and other variations of the acquired samples.
Author Aguilera, Cristhian
Aguilera, Cristhian A.
Conci, Aura
De Sa, Fernando P. G.
Author_xml – sequence: 1
  givenname: Fernando P. G.
  surname: De Sa
  fullname: De Sa, Fernando P. G.
  email: fernandosa@id.uff.br
  organization: Institute of Computing (IC), Federal Fluminense University (UFF),Niterói,Brazil
– sequence: 2
  givenname: Cristhian
  surname: Aguilera
  fullname: Aguilera, Cristhian
  email: cristhia@ubiobio.cl
  organization: University of Bío-Bío,Department of Electrical and Electronics Engineering,Concepción,Chile
– sequence: 3
  givenname: Cristhian A.
  surname: Aguilera
  fullname: Aguilera, Cristhian A.
  email: cristhian.aguilera@ulagos.cl
  organization: University of Lagos,Departamento de Ciencias de la Ingeniería,Osorno,Chile
– sequence: 4
  givenname: Aura
  surname: Conci
  fullname: Conci, Aura
  email: aconci@id.uff.br
  organization: Institute of Computing (IC), Federal Fluminense University (UFF),Niterói,Brazil
BookMark eNotj0tLw0AUhUdRsK39BW4G96nzntxlG-wDKha163IzvZGRdCqZuPDfG7Bw4Cw-OHxnzG7SORFjj1LMpBTw9L5ZrN7mu4212vqZEkrNAECWQl-xKfhSOmeN1aWV12yktPeFNdLdsXHOX0JIAFeO2HqJP23PqxZzjk0M2Mdz4kNeqMVTTMSXGOjId5iozXyfY_rk23PAli9iwu53IH1PXbpntw22maaXnrD98vmjWhfb19Wmmm-LqITuCxfIhBrRW0MExwYaCNLVVrpQOtOUDRgvNdYEoraE5IUQTtZkoFbkEfSEPfzvRiI6fHfxNEgcLsf1H-VGUJY
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SIBGRAPI55357.2022.9991803
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665453851
1665453850
EISSN 2377-5416
EndPage 227
ExternalDocumentID 9991803
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-6ce4cbaa754ee9df9f9c16b516c864f8f94713abe90b5eae700061be49b2e7a93
IEDL.DBID RIE
IngestDate Wed Aug 27 02:27:40 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-6ce4cbaa754ee9df9f9c16b516c864f8f94713abe90b5eae700061be49b2e7a93
PageCount 6
ParticipantIDs ieee_primary_9991803
PublicationCentury 2000
PublicationDate 2022-Oct.-24
PublicationDateYYYYMMDD 2022-10-24
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-24
  day: 24
PublicationDecade 2020
PublicationTitle Proceedings - Brazilian Symposium on Computer Graphics and Image Processing
PublicationTitleAbbrev SIBGRAPI
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0019968
Score 2.2026792
Snippet The wood-based industry is the focus of users that require changes towards a clean industry, environmentally friendly and with efficient use of natural...
SourceID ieee
SourceType Publisher
StartPage 222
SubjectTerms fault classification
Feature extraction
Industries
Inspection
LBCNN
melamine panel
Neural networks
Pattern recognition
Quality control
Transformers
wood defect classification
Title Fault Classification on Melamine Faced Panels Using Local Binary Pattern
URI https://ieeexplore.ieee.org/document/9991803
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwHA3Tk1782MRvcvBoujZN0uToxLqJk6EOdhtJ-iuI0om0F_96k6zODzwIPZR-0JJf4L02770fQmeOEhQ0izlhogDCSpYQabUkGS1VrB1CgwkC2TsxnLKbGZ910PnKCwMAQXwGkd8Na_nFwjb-V1nfkxnpoz3X3DRberVWKwaOt8s2VDSJVf9hNLi-v5iMOE955j4DKY3au3-0UQkokm-h8efzl-KR56ipTWTff0Uz_vcFt1Hvy6-HJysk2kEdqHbR5reowS4a5rp5qXHogenVQaEg2G1jcHPCXYdzbaHAE105tMRBSYBvPdDhQbDsujPe-FP10DS_erwckraLAnmicVoTYYFZo3XGGYAqSlUqmwjDE2GlYKUslcOnVBtQseGgIQu0xgBThkKmVbqH1qtFBfsISyaVKYxyrIyxVChli1hZcKyPaSu4PkBdPybz12VQxrwdjsO_Dx-hDV8XDwSUHaP1-q2BE4fwtTkNpf0A7CylpQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA1DH9QXL5t4Nw8-2q6XJE0enVg73cbQDfY2kvQriNKJtC_-epOszgs-CH0ovUDIVzgnzTnnQ-jCUII8SgLqEZaDRwoSelxL7iVRIQJpEBqUE8iOWDYldzM6a6HLlRcGAJz4DHx76vby84Wu7a-yriUz3EZ7rlOzquBLt9Zqz8Awd97EioaB6D72e7cPV-M-pTFNzEIwivzm_R-NVByOpNto-DmCpXzk2a8r5ev3X-GM_x3iDup8OfbweIVFu6gF5R7a-hY22EZZKuuXCrsumFYf5EqCzTEE81WY53AqNeR4LEuDl9hpCfDAQh3uOdOuuWOtP2UHTdObyXXmNX0UvKcoiCuPaSBaSZlQAiDyQhRCh0zRkGnOSMELYRAqlgpEoChISByxUUCEiiCRIt5Ha-WihAOEOeFC5UoYXkZIzITQeSA0GN5HpGZUHqK2nZP56zIqY95Mx9Hfl8_RRjYZDuaD_uj-GG3aGllYiMgJWqveajg1eF-pM1fmD9TFqPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+Brazilian+Symposium+on+Computer+Graphics+and+Image+Processing&rft.atitle=Fault+Classification+on+Melamine+Faced+Panels+Using+Local+Binary+Pattern&rft.au=De+Sa%2C+Fernando+P.+G.&rft.au=Aguilera%2C+Cristhian&rft.au=Aguilera%2C+Cristhian+A.&rft.au=Conci%2C+Aura&rft.date=2022-10-24&rft.pub=IEEE&rft.eissn=2377-5416&rft.volume=1&rft.spage=222&rft.epage=227&rft_id=info:doi/10.1109%2FSIBGRAPI55357.2022.9991803&rft.externalDocID=9991803