Fault Classification on Melamine Faced Panels Using Local Binary Pattern
The wood-based industry is the focus of users that require changes towards a clean industry, environmentally friendly and with efficient use of natural resources. Tasks of inspection and quality control are essential in this scenario. In this work, a dataset with samples obtained from near-infrared...
Saved in:
Published in | Proceedings - Brazilian Symposium on Computer Graphics and Image Processing Vol. 1; pp. 222 - 227 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
24.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2377-5416 |
DOI | 10.1109/SIBGRAPI55357.2022.9991803 |
Cover
Abstract | The wood-based industry is the focus of users that require changes towards a clean industry, environmentally friendly and with efficient use of natural resources. Tasks of inspection and quality control are essential in this scenario. In this work, a dataset with samples obtained from near-infrared (NIR) image acquisition is used to evaluate the limits of the local binary pattern (LBP) for quality control of melamine board products. Conventional pattern recognition and convolutional neural network (CNN) approaches are compared concerning their use to classify the most common groups of faults present on the plant for the inspection task. The local binary convolutional neural networks (LBCNN) is used for inspecting, in a CNN inspired by the traditional LBP texture descriptor. The work shows that such a reformulation of the standard LBP is very simple and enables similar results. However, the results present better performance when LBP is combined with another type of feature, even only based on intensity. Similar modifications of standard CNN can be tested to promote the development of new CNN models insensible to texture granularity, image resolution, intensity range, and other variations of the acquired samples. |
---|---|
AbstractList | The wood-based industry is the focus of users that require changes towards a clean industry, environmentally friendly and with efficient use of natural resources. Tasks of inspection and quality control are essential in this scenario. In this work, a dataset with samples obtained from near-infrared (NIR) image acquisition is used to evaluate the limits of the local binary pattern (LBP) for quality control of melamine board products. Conventional pattern recognition and convolutional neural network (CNN) approaches are compared concerning their use to classify the most common groups of faults present on the plant for the inspection task. The local binary convolutional neural networks (LBCNN) is used for inspecting, in a CNN inspired by the traditional LBP texture descriptor. The work shows that such a reformulation of the standard LBP is very simple and enables similar results. However, the results present better performance when LBP is combined with another type of feature, even only based on intensity. Similar modifications of standard CNN can be tested to promote the development of new CNN models insensible to texture granularity, image resolution, intensity range, and other variations of the acquired samples. |
Author | Aguilera, Cristhian Aguilera, Cristhian A. Conci, Aura De Sa, Fernando P. G. |
Author_xml | – sequence: 1 givenname: Fernando P. G. surname: De Sa fullname: De Sa, Fernando P. G. email: fernandosa@id.uff.br organization: Institute of Computing (IC), Federal Fluminense University (UFF),Niterói,Brazil – sequence: 2 givenname: Cristhian surname: Aguilera fullname: Aguilera, Cristhian email: cristhia@ubiobio.cl organization: University of Bío-Bío,Department of Electrical and Electronics Engineering,Concepción,Chile – sequence: 3 givenname: Cristhian A. surname: Aguilera fullname: Aguilera, Cristhian A. email: cristhian.aguilera@ulagos.cl organization: University of Lagos,Departamento de Ciencias de la Ingeniería,Osorno,Chile – sequence: 4 givenname: Aura surname: Conci fullname: Conci, Aura email: aconci@id.uff.br organization: Institute of Computing (IC), Federal Fluminense University (UFF),Niterói,Brazil |
BookMark | eNotj0tLw0AUhUdRsK39BW4G96nzntxlG-wDKha163IzvZGRdCqZuPDfG7Bw4Cw-OHxnzG7SORFjj1LMpBTw9L5ZrN7mu4212vqZEkrNAECWQl-xKfhSOmeN1aWV12yktPeFNdLdsXHOX0JIAFeO2HqJP23PqxZzjk0M2Mdz4kNeqMVTTMSXGOjId5iozXyfY_rk23PAli9iwu53IH1PXbpntw22maaXnrD98vmjWhfb19Wmmm-LqITuCxfIhBrRW0MExwYaCNLVVrpQOtOUDRgvNdYEoraE5IUQTtZkoFbkEfSEPfzvRiI6fHfxNEgcLsf1H-VGUJY |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/SIBGRAPI55357.2022.9991803 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781665453851 1665453850 |
EISSN | 2377-5416 |
EndPage | 227 |
ExternalDocumentID | 9991803 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i203t-6ce4cbaa754ee9df9f9c16b516c864f8f94713abe90b5eae700061be49b2e7a93 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:27:40 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-6ce4cbaa754ee9df9f9c16b516c864f8f94713abe90b5eae700061be49b2e7a93 |
PageCount | 6 |
ParticipantIDs | ieee_primary_9991803 |
PublicationCentury | 2000 |
PublicationDate | 2022-Oct.-24 |
PublicationDateYYYYMMDD | 2022-10-24 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct.-24 day: 24 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings - Brazilian Symposium on Computer Graphics and Image Processing |
PublicationTitleAbbrev | SIBGRAPI |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0019968 |
Score | 2.2026792 |
Snippet | The wood-based industry is the focus of users that require changes towards a clean industry, environmentally friendly and with efficient use of natural... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 222 |
SubjectTerms | fault classification Feature extraction Industries Inspection LBCNN melamine panel Neural networks Pattern recognition Quality control Transformers wood defect classification |
Title | Fault Classification on Melamine Faced Panels Using Local Binary Pattern |
URI | https://ieeexplore.ieee.org/document/9991803 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwHA3Tk1782MRvcvBoujZN0uToxLqJk6EOdhtJ-iuI0om0F_96k6zODzwIPZR-0JJf4L02770fQmeOEhQ0izlhogDCSpYQabUkGS1VrB1CgwkC2TsxnLKbGZ910PnKCwMAQXwGkd8Na_nFwjb-V1nfkxnpoz3X3DRberVWKwaOt8s2VDSJVf9hNLi-v5iMOE955j4DKY3au3-0UQkokm-h8efzl-KR56ipTWTff0Uz_vcFt1Hvy6-HJysk2kEdqHbR5reowS4a5rp5qXHogenVQaEg2G1jcHPCXYdzbaHAE105tMRBSYBvPdDhQbDsujPe-FP10DS_erwckraLAnmicVoTYYFZo3XGGYAqSlUqmwjDE2GlYKUslcOnVBtQseGgIQu0xgBThkKmVbqH1qtFBfsISyaVKYxyrIyxVChli1hZcKyPaSu4PkBdPybz12VQxrwdjsO_Dx-hDV8XDwSUHaP1-q2BE4fwtTkNpf0A7CylpQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA1DH9QXL5t4Nw8-2q6XJE0enVg73cbQDfY2kvQriNKJtC_-epOszgs-CH0ovUDIVzgnzTnnQ-jCUII8SgLqEZaDRwoSelxL7iVRIQJpEBqUE8iOWDYldzM6a6HLlRcGAJz4DHx76vby84Wu7a-yriUz3EZ7rlOzquBLt9Zqz8Awd97EioaB6D72e7cPV-M-pTFNzEIwivzm_R-NVByOpNto-DmCpXzk2a8r5ev3X-GM_x3iDup8OfbweIVFu6gF5R7a-hY22EZZKuuXCrsumFYf5EqCzTEE81WY53AqNeR4LEuDl9hpCfDAQh3uOdOuuWOtP2UHTdObyXXmNX0UvKcoiCuPaSBaSZlQAiDyQhRCh0zRkGnOSMELYRAqlgpEoChISByxUUCEiiCRIt5Ha-WihAOEOeFC5UoYXkZIzITQeSA0GN5HpGZUHqK2nZP56zIqY95Mx9Hfl8_RRjYZDuaD_uj-GG3aGllYiMgJWqveajg1eF-pM1fmD9TFqPg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+Brazilian+Symposium+on+Computer+Graphics+and+Image+Processing&rft.atitle=Fault+Classification+on+Melamine+Faced+Panels+Using+Local+Binary+Pattern&rft.au=De+Sa%2C+Fernando+P.+G.&rft.au=Aguilera%2C+Cristhian&rft.au=Aguilera%2C+Cristhian+A.&rft.au=Conci%2C+Aura&rft.date=2022-10-24&rft.pub=IEEE&rft.eissn=2377-5416&rft.volume=1&rft.spage=222&rft.epage=227&rft_id=info:doi/10.1109%2FSIBGRAPI55357.2022.9991803&rft.externalDocID=9991803 |