Deep Learning-Aided 5G Channel Estimation

Deep learning has demonstrated the important roles in improving the system performance and reducing computational complexity for 5G-and-beyond networks. In this paper, we propose a new channel estimation method with the assistance of deep learning in order to support the least squares estimation, wh...

Full description

Saved in:
Bibliographic Details
Published in2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM) pp. 1 - 7
Main Authors Ha, An Le, Van Chien, Trinh, Nguyen, Tien Hoa, Choi, Wan, Nguyen, Van Duc
Format Conference Proceeding
LanguageEnglish
Published IEEE 04.01.2021
Subjects
Online AccessGet full text
DOI10.1109/IMCOM51814.2021.9377351

Cover

Abstract Deep learning has demonstrated the important roles in improving the system performance and reducing computational complexity for 5G-and-beyond networks. In this paper, we propose a new channel estimation method with the assistance of deep learning in order to support the least squares estimation, which is a low-cost method but having relatively high channel estimation errors. This goal is achieved by utilizing a MIMO (multiple-input multiple-output) system with a multi-path channel profile used for simulations in the 5G networks under the severity of Doppler effects. Numerical results demonstrate the superiority of the proposed deep learning-assisted channel estimation method over the other channel estimation methods in previous works in terms of mean square errors.
AbstractList Deep learning has demonstrated the important roles in improving the system performance and reducing computational complexity for 5G-and-beyond networks. In this paper, we propose a new channel estimation method with the assistance of deep learning in order to support the least squares estimation, which is a low-cost method but having relatively high channel estimation errors. This goal is achieved by utilizing a MIMO (multiple-input multiple-output) system with a multi-path channel profile used for simulations in the 5G networks under the severity of Doppler effects. Numerical results demonstrate the superiority of the proposed deep learning-assisted channel estimation method over the other channel estimation methods in previous works in terms of mean square errors.
Author Van Chien, Trinh
Ha, An Le
Nguyen, Van Duc
Choi, Wan
Nguyen, Tien Hoa
Author_xml – sequence: 1
  givenname: An Le
  surname: Ha
  fullname: Ha, An Le
  email: an.lh150005@sis.hust.edu.vn
  organization: Seoul National University,Department of Electrical and Computer Engineering,Seoul,Korea
– sequence: 2
  givenname: Trinh
  surname: Van Chien
  fullname: Van Chien, Trinh
  email: vanchien.trinh@uni.lu
  organization: Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg,Luxembourg
– sequence: 3
  givenname: Tien Hoa
  surname: Nguyen
  fullname: Nguyen, Tien Hoa
  email: hoa.nguyentien@hust.edu.vn
  organization: School of Electronics and Telecommunications, Hanoi University of Science and Technology,Hanoi,Vietnam
– sequence: 4
  givenname: Wan
  surname: Choi
  fullname: Choi, Wan
  email: wanchoi@snu.ac.kr
  organization: Seoul National University,Department of Electrical and Computer Engineering,Seoul,Korea
– sequence: 5
  givenname: Van Duc
  surname: Nguyen
  fullname: Nguyen, Van Duc
  email: duc.nguyenvan1@hust.edu.vn
  organization: School of Electronics and Telecommunications, Hanoi University of Science and Technology,Hanoi,Vietnam
BookMark eNotjj1PAkEUANdECkF_AYXXWtz53tvvkpyIJEdo6Mne7jvdBBdyXOO_10Sq6WZmLu7LubAQzwgNIvjX7a7d7zQ6VA0BYeOltVLjnZijMVqRROcexMsb86XqOIwll896lROnSm-q9iuUwqdqfZ3yd5jyuTyK2RBOV366cSEO7-tD-1F3-822XXV1JpBTbaInTjFwYh9Jx2CTktHrpLxX7Cz0yZIfoiXoB5O4DypwP0QwoMiBXIjlvzYz8_Ey_tXHn-NtXv4C0dc-ng
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IMCOM51814.2021.9377351
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665423188
9781665423182
EndPage 7
ExternalDocumentID 9377351
Genre orig-research
GrantInformation_xml – fundername: Vietnam's Ministry of Education and Training
  grantid: B2019-BKA-10
  funderid: 10.13039/501100005645
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-6c92edcaede9c25ca7d43c95d4994e870bd729fc720bf6deba4aebfc06042803
IEDL.DBID RIE
IngestDate Wed Oct 01 07:05:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-6c92edcaede9c25ca7d43c95d4994e870bd729fc720bf6deba4aebfc06042803
PageCount 7
ParticipantIDs ieee_primary_9377351
PublicationCentury 2000
PublicationDate 2021-Jan.-4
PublicationDateYYYYMMDD 2021-01-04
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.-4
  day: 04
PublicationDecade 2020
PublicationTitle 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM)
PublicationTitleAbbrev IMCOM
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.0603254
Snippet Deep learning has demonstrated the important roles in improving the system performance and reducing computational complexity for 5G-and-beyond networks. In...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms 5G mobile communication
Channel estimation
Deep learning
Deep Neural Networks
Estimation
Frequency Selective Channels
MIMO communication
Multiple-Input Multiple-Output
Signal to noise ratio
System performance
Title Deep Learning-Aided 5G Channel Estimation
URI https://ieeexplore.ieee.org/document/9377351
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qT55UWvFNDl4Ek6abfTRHqa1ViHqo0FvZx0SKkpaSXvz1ziaxonjwFpbAvpj9dr6dbwbgUica6ZZN3snAYUiIL0IjnefgyXcgj0ta7XnI7FFOXvjDTMxacL3VwiBiFXyGkf-s3vLd0m48VdYjKFWJ10vvKJXWWq0mZKsfp737bPiUCUIsT5WwftT8_aNsSoUa4z3Ivvqrg0Xeok1pIvvxKxXjfwe0D91vfV7wvEWeA2hh0YGrW8RV0ORLfQ1vFg5dIO4Crx8o8D0YkTHXOsUuTMej6XASNoUQwgWLkzKUNmXorEaHqWXCauV4YlPhyF3hSBZnHN2Rc6tYbHLp0Giu0eTWJ8bx1acOoV0sCzyCQLBYx8oOcjaQPCV7jp3k2khFp5zSon8MHT_L-apOdTFvJnjyd_Mp7PqVrhgJfgbtcr3Bc8Lo0lxUm_MJ632RYg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1KPehJpRW_zcGLYNJ0sx_JUWprq031UKG3sh8TKUpaJL34651NYkXx4C0sgexmmbx9L_NmCLlUkQI8ZSM7iS34iPjc18I6DR65AzIuYZTTIdOJGD6z-xmfNcj1xgsDAGXyGQTusvyXb5dm7aSyDkKpjJxfeosjq5CVW6tO2uqGSWeU9h5TjpjlxBLaDer7fzROKXFjsEvSrydW6SKvwbrQgfn4VYzxv1PaI-1vh573tMGefdKAvEWubgFWXl0x9cW_WViwHr_znIMghzevj-FcORXbZDroT3tDv26F4C9oGBW-MAkFaxRYSAzlRknLIpNwi4SFAcactnhKzoykoc6EBa2YAp0ZVxrH9Z86IM18mcMh8TgNVShNnNFYsAQjOrSCKS0kfuek4t0j0nKrnK-qYhfzeoHHfw9fkO3hNB3Px6PJwwnZcW-91CfYKWkW72s4Q8Qu9Hm5UZ_D3pSz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+15th+International+Conference+on+Ubiquitous+Information+Management+and+Communication+%28IMCOM%29&rft.atitle=Deep+Learning-Aided+5G+Channel+Estimation&rft.au=Ha%2C+An+Le&rft.au=Van+Chien%2C+Trinh&rft.au=Nguyen%2C+Tien+Hoa&rft.au=Choi%2C+Wan&rft.date=2021-01-04&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FIMCOM51814.2021.9377351&rft.externalDocID=9377351