Deep Learning-Aided 5G Channel Estimation
Deep learning has demonstrated the important roles in improving the system performance and reducing computational complexity for 5G-and-beyond networks. In this paper, we propose a new channel estimation method with the assistance of deep learning in order to support the least squares estimation, wh...
Saved in:
Published in | 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM) pp. 1 - 7 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
04.01.2021
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/IMCOM51814.2021.9377351 |
Cover
Abstract | Deep learning has demonstrated the important roles in improving the system performance and reducing computational complexity for 5G-and-beyond networks. In this paper, we propose a new channel estimation method with the assistance of deep learning in order to support the least squares estimation, which is a low-cost method but having relatively high channel estimation errors. This goal is achieved by utilizing a MIMO (multiple-input multiple-output) system with a multi-path channel profile used for simulations in the 5G networks under the severity of Doppler effects. Numerical results demonstrate the superiority of the proposed deep learning-assisted channel estimation method over the other channel estimation methods in previous works in terms of mean square errors. |
---|---|
AbstractList | Deep learning has demonstrated the important roles in improving the system performance and reducing computational complexity for 5G-and-beyond networks. In this paper, we propose a new channel estimation method with the assistance of deep learning in order to support the least squares estimation, which is a low-cost method but having relatively high channel estimation errors. This goal is achieved by utilizing a MIMO (multiple-input multiple-output) system with a multi-path channel profile used for simulations in the 5G networks under the severity of Doppler effects. Numerical results demonstrate the superiority of the proposed deep learning-assisted channel estimation method over the other channel estimation methods in previous works in terms of mean square errors. |
Author | Van Chien, Trinh Ha, An Le Nguyen, Van Duc Choi, Wan Nguyen, Tien Hoa |
Author_xml | – sequence: 1 givenname: An Le surname: Ha fullname: Ha, An Le email: an.lh150005@sis.hust.edu.vn organization: Seoul National University,Department of Electrical and Computer Engineering,Seoul,Korea – sequence: 2 givenname: Trinh surname: Van Chien fullname: Van Chien, Trinh email: vanchien.trinh@uni.lu organization: Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg,Luxembourg – sequence: 3 givenname: Tien Hoa surname: Nguyen fullname: Nguyen, Tien Hoa email: hoa.nguyentien@hust.edu.vn organization: School of Electronics and Telecommunications, Hanoi University of Science and Technology,Hanoi,Vietnam – sequence: 4 givenname: Wan surname: Choi fullname: Choi, Wan email: wanchoi@snu.ac.kr organization: Seoul National University,Department of Electrical and Computer Engineering,Seoul,Korea – sequence: 5 givenname: Van Duc surname: Nguyen fullname: Nguyen, Van Duc email: duc.nguyenvan1@hust.edu.vn organization: School of Electronics and Telecommunications, Hanoi University of Science and Technology,Hanoi,Vietnam |
BookMark | eNotjj1PAkEUANdECkF_AYXXWtz53tvvkpyIJEdo6Mne7jvdBBdyXOO_10Sq6WZmLu7LubAQzwgNIvjX7a7d7zQ6VA0BYeOltVLjnZijMVqRROcexMsb86XqOIwll896lROnSm-q9iuUwqdqfZ3yd5jyuTyK2RBOV366cSEO7-tD-1F3-822XXV1JpBTbaInTjFwYh9Jx2CTktHrpLxX7Cz0yZIfoiXoB5O4DypwP0QwoMiBXIjlvzYz8_Ey_tXHn-NtXv4C0dc-ng |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/IMCOM51814.2021.9377351 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1665423188 9781665423182 |
EndPage | 7 |
ExternalDocumentID | 9377351 |
Genre | orig-research |
GrantInformation_xml | – fundername: Vietnam's Ministry of Education and Training grantid: B2019-BKA-10 funderid: 10.13039/501100005645 |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i203t-6c92edcaede9c25ca7d43c95d4994e870bd729fc720bf6deba4aebfc06042803 |
IEDL.DBID | RIE |
IngestDate | Wed Oct 01 07:05:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-6c92edcaede9c25ca7d43c95d4994e870bd729fc720bf6deba4aebfc06042803 |
PageCount | 7 |
ParticipantIDs | ieee_primary_9377351 |
PublicationCentury | 2000 |
PublicationDate | 2021-Jan.-4 |
PublicationDateYYYYMMDD | 2021-01-04 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-Jan.-4 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM) |
PublicationTitleAbbrev | IMCOM |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 2.0603254 |
Snippet | Deep learning has demonstrated the important roles in improving the system performance and reducing computational complexity for 5G-and-beyond networks. In... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | 5G mobile communication Channel estimation Deep learning Deep Neural Networks Estimation Frequency Selective Channels MIMO communication Multiple-Input Multiple-Output Signal to noise ratio System performance |
Title | Deep Learning-Aided 5G Channel Estimation |
URI | https://ieeexplore.ieee.org/document/9377351 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qT55UWvFNDl4Ek6abfTRHqa1ViHqo0FvZx0SKkpaSXvz1ziaxonjwFpbAvpj9dr6dbwbgUica6ZZN3snAYUiIL0IjnefgyXcgj0ta7XnI7FFOXvjDTMxacL3VwiBiFXyGkf-s3vLd0m48VdYjKFWJ10vvKJXWWq0mZKsfp737bPiUCUIsT5WwftT8_aNsSoUa4z3Ivvqrg0Xeok1pIvvxKxXjfwe0D91vfV7wvEWeA2hh0YGrW8RV0ORLfQ1vFg5dIO4Crx8o8D0YkTHXOsUuTMej6XASNoUQwgWLkzKUNmXorEaHqWXCauV4YlPhyF3hSBZnHN2Rc6tYbHLp0Giu0eTWJ8bx1acOoV0sCzyCQLBYx8oOcjaQPCV7jp3k2khFp5zSon8MHT_L-apOdTFvJnjyd_Mp7PqVrhgJfgbtcr3Bc8Lo0lxUm_MJ632RYg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1KPehJpRW_zcGLYNJ0sx_JUWprq031UKG3sh8TKUpaJL34651NYkXx4C0sgexmmbx9L_NmCLlUkQI8ZSM7iS34iPjc18I6DR65AzIuYZTTIdOJGD6z-xmfNcj1xgsDAGXyGQTusvyXb5dm7aSyDkKpjJxfeosjq5CVW6tO2uqGSWeU9h5TjpjlxBLaDer7fzROKXFjsEvSrydW6SKvwbrQgfn4VYzxv1PaI-1vh573tMGefdKAvEWubgFWXl0x9cW_WViwHr_znIMghzevj-FcORXbZDroT3tDv26F4C9oGBW-MAkFaxRYSAzlRknLIpNwi4SFAcactnhKzoykoc6EBa2YAp0ZVxrH9Z86IM18mcMh8TgNVShNnNFYsAQjOrSCKS0kfuek4t0j0nKrnK-qYhfzeoHHfw9fkO3hNB3Px6PJwwnZcW-91CfYKWkW72s4Q8Qu9Hm5UZ_D3pSz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+15th+International+Conference+on+Ubiquitous+Information+Management+and+Communication+%28IMCOM%29&rft.atitle=Deep+Learning-Aided+5G+Channel+Estimation&rft.au=Ha%2C+An+Le&rft.au=Van+Chien%2C+Trinh&rft.au=Nguyen%2C+Tien+Hoa&rft.au=Choi%2C+Wan&rft.date=2021-01-04&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FIMCOM51814.2021.9377351&rft.externalDocID=9377351 |