Exploratory Community Detection: Finding Communities in Unknown Networks
Community detection amounts to one of the key methods in handling social networks with the aim of capturing global patterns of a network. This paper focuses on a situation where the network is unknown, which would render existing algorithms unusable. We propose exploratory community detection which...
Saved in:
| Published in | 2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN) pp. 206 - 211 |
|---|---|
| Main Authors | , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.12.2019
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/MSN48538.2019.00048 |
Cover
| Abstract | Community detection amounts to one of the key methods in handling social networks with the aim of capturing global patterns of a network. This paper focuses on a situation where the network is unknown, which would render existing algorithms unusable. We propose exploratory community detection which aims to detect communities by utilizing samples taken from diffusion process over the network. For this problem, we propose a neural-based algorithm that develops a matrix representation of the network structure. This matrix is then the input of a spectral clustering algorithm to reveal communities in the network. We perform experiments on real-world and synthetic data sets with simulated diffusion samples.The results reveal that our algorithm has strong empirical performance. |
|---|---|
| AbstractList | Community detection amounts to one of the key methods in handling social networks with the aim of capturing global patterns of a network. This paper focuses on a situation where the network is unknown, which would render existing algorithms unusable. We propose exploratory community detection which aims to detect communities by utilizing samples taken from diffusion process over the network. For this problem, we propose a neural-based algorithm that develops a matrix representation of the network structure. This matrix is then the input of a spectral clustering algorithm to reveal communities in the network. We perform experiments on real-world and synthetic data sets with simulated diffusion samples.The results reveal that our algorithm has strong empirical performance. |
| Author | Su, Hongyi Meng, Fanku Yan, Bo Liu, Jiamou Liu, Yiping |
| Author_xml | – sequence: 1 givenname: Bo surname: Yan fullname: Yan, Bo organization: Beijing Institute of Technology, China – sequence: 2 givenname: Fanku surname: Meng fullname: Meng, Fanku organization: Beijing Institute of Technology, China – sequence: 3 givenname: Jiamou surname: Liu fullname: Liu, Jiamou organization: Beijing Institute of Technology, China – sequence: 4 givenname: Yiping surname: Liu fullname: Liu, Yiping organization: Beijing Institute of Technology, China – sequence: 5 givenname: Hongyi surname: Su fullname: Su, Hongyi organization: Beijing Institute of Technology, China |
| BookMark | eNo9js1Kw0AURkfQhdY-QTfzAon3TpL5cSextUJtF7XrkkluZGgzU5KRmre3UHH1HThw-B7YrQ-eGJshpIhgnj6261wXmU4FoEkBINc3bGqURiU0FgKFumfL-c_pGPoqhn7kZei6b-_iyF8pUh1d8M984Xzj_Ne_dDRw5_nOH3w4e76meA79YXhkd211HGj6txO2W8w_y2Wy2ry9ly-rxAnIYiKtFJW1rRWUo7aXKyitkkJAQa3NFUKdWUlS1Y2UurDNBUnbCnMydWt0NmGza9cR0f7Uu67qx70BKUGa7Bd_I0r1 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/MSN48538.2019.00048 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Computer Science |
| EISBN | 9781728152127 1728152127 |
| EndPage | 211 |
| ExternalDocumentID | 9066069 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i203t-6b62abbfb2e418b17216b762205efb4710c3b6e67cd6685bde67e8ba14e9cf983 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:38:57 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-6b62abbfb2e418b17216b762205efb4710c3b6e67cd6685bde67e8ba14e9cf983 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9066069 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-Dec. |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-Dec. |
| PublicationDecade | 2010 |
| PublicationTitle | 2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN) |
| PublicationTitleAbbrev | MSN |
| PublicationYear | 2019 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7094812 |
| Snippet | Community detection amounts to one of the key methods in handling social networks with the aim of capturing global patterns of a network. This paper focuses on... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 206 |
| SubjectTerms | Clustering algorithms community detection Computer science Diffusion processes information diffusion Neural networks Social network services Sociology spectral method Statistics unknown network |
| Title | Exploratory Community Detection: Finding Communities in Unknown Networks |
| URI | https://ieeexplore.ieee.org/document/9066069 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO-003Sb-JgePdsuaNku8qmMIG4IOdht76QsMoRNtD_rXm6TdRPHgLaTQhPdovib5vu8BXLlFH61DukjYxEbJmlSkUh1HRqBWnNLMzd6zLeZyukgelumyAdd7LQwRBfIZDXwz3OVnW1P6o7KhdvjIpW5Cc6xkpdWqjYRGXA9nT_PEgU_ga-ngwql-lEwJiDHpwGw3VkUUeRmUBQ7M5y8bxv9O5gD639o89rhHnUNoUN6Fzq44A6u_1S60_W9k5cLcg2lFtQs36qzWhBQf7I6KwMTKb9hkE-Qt-4duA802OVvk_tAtZ_OKLf7eh8Xk_vl2GtU1FKJNzEURSZTxGtFiTMlIod_wSXQLYMxTsuiQibusSJJjk0mpUsxckxSuRwlpY7USR9DKtzkdA9NcJGnmgovSOOhzbzUcU0tCCGu4MCfQ81FavVY2Gas6QKd_d59B2-epYoacQ6t4K-nC4XuBlyGxX_fCqOA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGP2CeJATChh_24NHB2X9YetVJVNhMRESboR2bUJMhtFx0L_ethsYjQdvTZeszfdlfWv73vsALtyir6xDuohYaiM6NyISTMaRJkoKbFjmZu_ZFilPJvRhyqY1uNxoYYwxgXxmur4Z7vKzpV75o7KedPiIudyCbUYpZaVaq7IS6mPZGz2n1MFPYGzJ4MMpfhRNCZgxaMJoPVpJFXnprgrV1Z-_jBj_O51d6Hyr89DTBnf2oGbyFjTX5RlQ9bW2oOF_JEsf5jYkJdku3KmjShVSfKBbUwQuVn6NBosgcNk8dFtotMjRJPfHbjlKS774ewcmg7vxTRJVVRSiRYxJEXHF47lSVsWG9oXyWz6u3BIYY2asctiEXV644Vc641wwlbmmEWrep0ZqKwXZh3q-zM0BIIkJZZkLruLagZ97q8aKWUMIsRoTfQhtH6XZa2mUMasCdPR39znsJOPRcDa8Tx-PoeFzVvJETqBevK3MqUP7Qp2FJH8B-8OsLQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+15th+International+Conference+on+Mobile+Ad-Hoc+and+Sensor+Networks+%28MSN%29&rft.atitle=Exploratory+Community+Detection%3A+Finding+Communities+in+Unknown+Networks&rft.au=Yan%2C+Bo&rft.au=Meng%2C+Fanku&rft.au=Liu%2C+Jiamou&rft.au=Liu%2C+Yiping&rft.date=2019-12-01&rft.pub=IEEE&rft.spage=206&rft.epage=211&rft_id=info:doi/10.1109%2FMSN48538.2019.00048&rft.externalDocID=9066069 |