Exploratory Community Detection: Finding Communities in Unknown Networks

Community detection amounts to one of the key methods in handling social networks with the aim of capturing global patterns of a network. This paper focuses on a situation where the network is unknown, which would render existing algorithms unusable. We propose exploratory community detection which...

Full description

Saved in:
Bibliographic Details
Published in2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN) pp. 206 - 211
Main Authors Yan, Bo, Meng, Fanku, Liu, Jiamou, Liu, Yiping, Su, Hongyi
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2019
Subjects
Online AccessGet full text
DOI10.1109/MSN48538.2019.00048

Cover

Abstract Community detection amounts to one of the key methods in handling social networks with the aim of capturing global patterns of a network. This paper focuses on a situation where the network is unknown, which would render existing algorithms unusable. We propose exploratory community detection which aims to detect communities by utilizing samples taken from diffusion process over the network. For this problem, we propose a neural-based algorithm that develops a matrix representation of the network structure. This matrix is then the input of a spectral clustering algorithm to reveal communities in the network. We perform experiments on real-world and synthetic data sets with simulated diffusion samples.The results reveal that our algorithm has strong empirical performance.
AbstractList Community detection amounts to one of the key methods in handling social networks with the aim of capturing global patterns of a network. This paper focuses on a situation where the network is unknown, which would render existing algorithms unusable. We propose exploratory community detection which aims to detect communities by utilizing samples taken from diffusion process over the network. For this problem, we propose a neural-based algorithm that develops a matrix representation of the network structure. This matrix is then the input of a spectral clustering algorithm to reveal communities in the network. We perform experiments on real-world and synthetic data sets with simulated diffusion samples.The results reveal that our algorithm has strong empirical performance.
Author Su, Hongyi
Meng, Fanku
Yan, Bo
Liu, Jiamou
Liu, Yiping
Author_xml – sequence: 1
  givenname: Bo
  surname: Yan
  fullname: Yan, Bo
  organization: Beijing Institute of Technology, China
– sequence: 2
  givenname: Fanku
  surname: Meng
  fullname: Meng, Fanku
  organization: Beijing Institute of Technology, China
– sequence: 3
  givenname: Jiamou
  surname: Liu
  fullname: Liu, Jiamou
  organization: Beijing Institute of Technology, China
– sequence: 4
  givenname: Yiping
  surname: Liu
  fullname: Liu, Yiping
  organization: Beijing Institute of Technology, China
– sequence: 5
  givenname: Hongyi
  surname: Su
  fullname: Su, Hongyi
  organization: Beijing Institute of Technology, China
BookMark eNo9js1Kw0AURkfQhdY-QTfzAon3TpL5cSextUJtF7XrkkluZGgzU5KRmre3UHH1HThw-B7YrQ-eGJshpIhgnj6261wXmU4FoEkBINc3bGqURiU0FgKFumfL-c_pGPoqhn7kZei6b-_iyF8pUh1d8M984Xzj_Ne_dDRw5_nOH3w4e76meA79YXhkd211HGj6txO2W8w_y2Wy2ry9ly-rxAnIYiKtFJW1rRWUo7aXKyitkkJAQa3NFUKdWUlS1Y2UurDNBUnbCnMydWt0NmGza9cR0f7Uu67qx70BKUGa7Bd_I0r1
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MSN48538.2019.00048
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Computer Science
EISBN 9781728152127
1728152127
EndPage 211
ExternalDocumentID 9066069
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-6b62abbfb2e418b17216b762205efb4710c3b6e67cd6685bde67e8ba14e9cf983
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:57 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-6b62abbfb2e418b17216b762205efb4710c3b6e67cd6685bde67e8ba14e9cf983
PageCount 6
ParticipantIDs ieee_primary_9066069
PublicationCentury 2000
PublicationDate 2019-Dec.
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-Dec.
PublicationDecade 2010
PublicationTitle 2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN)
PublicationTitleAbbrev MSN
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7094812
Snippet Community detection amounts to one of the key methods in handling social networks with the aim of capturing global patterns of a network. This paper focuses on...
SourceID ieee
SourceType Publisher
StartPage 206
SubjectTerms Clustering algorithms
community detection
Computer science
Diffusion processes
information diffusion
Neural networks
Social network services
Sociology
spectral method
Statistics
unknown network
Title Exploratory Community Detection: Finding Communities in Unknown Networks
URI https://ieeexplore.ieee.org/document/9066069
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO-003Sb-JgePdsuaNku8qmMIG4IOdht76QsMoRNtD_rXm6TdRPHgLaTQhPdovib5vu8BXLlFH61DukjYxEbJmlSkUh1HRqBWnNLMzd6zLeZyukgelumyAdd7LQwRBfIZDXwz3OVnW1P6o7KhdvjIpW5Cc6xkpdWqjYRGXA9nT_PEgU_ga-ngwql-lEwJiDHpwGw3VkUUeRmUBQ7M5y8bxv9O5gD639o89rhHnUNoUN6Fzq44A6u_1S60_W9k5cLcg2lFtQs36qzWhBQf7I6KwMTKb9hkE-Qt-4duA802OVvk_tAtZ_OKLf7eh8Xk_vl2GtU1FKJNzEURSZTxGtFiTMlIod_wSXQLYMxTsuiQibusSJJjk0mpUsxckxSuRwlpY7USR9DKtzkdA9NcJGnmgovSOOhzbzUcU0tCCGu4MCfQ81FavVY2Gas6QKd_d59B2-epYoacQ6t4K-nC4XuBlyGxX_fCqOA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGP2CeJATChh_24NHB2X9YetVJVNhMRESboR2bUJMhtFx0L_ethsYjQdvTZeszfdlfWv73vsALtyir6xDuohYaiM6NyISTMaRJkoKbFjmZu_ZFilPJvRhyqY1uNxoYYwxgXxmur4Z7vKzpV75o7KedPiIudyCbUYpZaVaq7IS6mPZGz2n1MFPYGzJ4MMpfhRNCZgxaMJoPVpJFXnprgrV1Z-_jBj_O51d6Hyr89DTBnf2oGbyFjTX5RlQ9bW2oOF_JEsf5jYkJdku3KmjShVSfKBbUwQuVn6NBosgcNk8dFtotMjRJPfHbjlKS774ewcmg7vxTRJVVRSiRYxJEXHF47lSVsWG9oXyWz6u3BIYY2asctiEXV644Vc641wwlbmmEWrep0ZqKwXZh3q-zM0BIIkJZZkLruLagZ97q8aKWUMIsRoTfQhtH6XZa2mUMasCdPR39znsJOPRcDa8Tx-PoeFzVvJETqBevK3MqUP7Qp2FJH8B-8OsLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+15th+International+Conference+on+Mobile+Ad-Hoc+and+Sensor+Networks+%28MSN%29&rft.atitle=Exploratory+Community+Detection%3A+Finding+Communities+in+Unknown+Networks&rft.au=Yan%2C+Bo&rft.au=Meng%2C+Fanku&rft.au=Liu%2C+Jiamou&rft.au=Liu%2C+Yiping&rft.date=2019-12-01&rft.pub=IEEE&rft.spage=206&rft.epage=211&rft_id=info:doi/10.1109%2FMSN48538.2019.00048&rft.externalDocID=9066069