Prediction and Inference in a Partially Hidden Markov-switching Framework with Autoregression. Application to Machinery Health Diagnosis

Time series subject to changes in regime are encountered in multiple applications. Models such as the renowned Hidden Markov Model (HMM) describe time series whose states are unknown at all time-steps. In some situations, partial knowledge on states is available. In this paper, we describe the Parti...

Full description

Saved in:
Bibliographic Details
Published inProceedings - International Conference on Tools with Artificial Intelligence, TAI pp. 1 - 9
Main Authors Dama, Fatoumata, Sinoquet, Christine
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2021
Subjects
Online AccessGet full text
ISSN2375-0197
DOI10.1109/ICTAI52525.2021.00009

Cover

Abstract Time series subject to changes in regime are encountered in multiple applications. Models such as the renowned Hidden Markov Model (HMM) describe time series whose states are unknown at all time-steps. In some situations, partial knowledge on states is available. In this paper, we describe the Partially Hidden Markov Chain Linear AutoRegressive (PHMC-LAR) model. This model combines a HMM framework with local state-specific linear autoregressive dynamics. Namely, this hybrid model extends two published models, the Markov-Switching AutoRegressive (MSAR) model and the Partially Hidden Markov Chain (PHMC). Our contributions in this paper address: (i) Expectation-Maximization-based semi-supervised parameter learning, (ii) time series prediction, (iii) latent state inference via a variant of the Viterbi algorithm. We first validate our model on synthetic data. We show that integrating relatively limited knowledge on states considerably accelerates model training, while still preserving good prediction and state inference performances. Further, we compare the state inference performances of PHMC-LAR, PHMC and MSAR on realistic data with ground truth, in the context of a machine health diagnosis application. PHMC and PHMC-LAR show comparable performances, while PHMC-LAR is mainly subject to state degradation anticipation errors. This is a desirable property to ensure system safety through early maintenance operations. Thus PHMC-LAR illustrates a contribution to machine learning with potential beneficial impacts on safety in industrial, transportation and health applications.
AbstractList Time series subject to changes in regime are encountered in multiple applications. Models such as the renowned Hidden Markov Model (HMM) describe time series whose states are unknown at all time-steps. In some situations, partial knowledge on states is available. In this paper, we describe the Partially Hidden Markov Chain Linear AutoRegressive (PHMC-LAR) model. This model combines a HMM framework with local state-specific linear autoregressive dynamics. Namely, this hybrid model extends two published models, the Markov-Switching AutoRegressive (MSAR) model and the Partially Hidden Markov Chain (PHMC). Our contributions in this paper address: (i) Expectation-Maximization-based semi-supervised parameter learning, (ii) time series prediction, (iii) latent state inference via a variant of the Viterbi algorithm. We first validate our model on synthetic data. We show that integrating relatively limited knowledge on states considerably accelerates model training, while still preserving good prediction and state inference performances. Further, we compare the state inference performances of PHMC-LAR, PHMC and MSAR on realistic data with ground truth, in the context of a machine health diagnosis application. PHMC and PHMC-LAR show comparable performances, while PHMC-LAR is mainly subject to state degradation anticipation errors. This is a desirable property to ensure system safety through early maintenance operations. Thus PHMC-LAR illustrates a contribution to machine learning with potential beneficial impacts on safety in industrial, transportation and health applications.
Author Sinoquet, Christine
Dama, Fatoumata
Author_xml – sequence: 1
  givenname: Fatoumata
  surname: Dama
  fullname: Dama, Fatoumata
  email: atoumata.dama@univ-nantes.fr
  organization: University of Nantes,LS2N UMR CNRS 6004,Nantes,France
– sequence: 2
  givenname: Christine
  surname: Sinoquet
  fullname: Sinoquet, Christine
  email: christine.sinoquet@univ-nantes.fr
  organization: University of Nantes,LS2N UMR CNRS 6004,Nantes,France
BookMark eNotjEtOwzAYhA0Cibb0BAjJF0jwM7GXUaE0UhFdlHXlxH9a09SpnEDVG3BszGNmMdJo5hujK995QOiekpRSoh_K2booJYtOGWE0JVH6Ak11rmiWSUGUVvQSjRjPZUKozm_QuO_fCWFEMj5CX6sA1tWD6zw23uLSNxDA14BdLPDKhMGZtj3jhbMWPH4xYd99Jv3JDfXO-S2eB3OAUxf2OFY7XHwMXYBtgL6PyBQXx2PravPLH7p4_3lBiDwwbdw_OrP1Xe_6W3TdmLaH6X9O0Nv8aT1bJMvX53JWLBPHCB-STAhDFOcV5Vw3UIGpObGZsFJCnWcKZKXyzGRVrURFeNNQQ7WmRMi8FtYKPkF3f1wHAJtjcAcTzhudCc4U49-xn2b7
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICTAI52525.2021.00009
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665408981
1665408987
EISSN 2375-0197
EndPage 9
ExternalDocumentID 9643282
Genre orig-research
GroupedDBID 23M
29O
6IE
6IF
6IH
6IK
6IL
6IN
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-644a0833b1339febeac30d64d55ec768e5b876a6bc84b03ff1a19910457c4dd43
IEDL.DBID RIE
IngestDate Wed Aug 27 05:03:29 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-644a0833b1339febeac30d64d55ec768e5b876a6bc84b03ff1a19910457c4dd43
PageCount 9
ParticipantIDs ieee_primary_9643282
PublicationCentury 2000
PublicationDate 2021-Nov.
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-Nov.
PublicationDecade 2020
PublicationTitle Proceedings - International Conference on Tools with Artificial Intelligence, TAI
PublicationTitleAbbrev ICTAI
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020523
Score 1.7851449
Snippet Time series subject to changes in regime are encountered in multiple applications. Models such as the renowned Hidden Markov Model (HMM) describe time series...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms autoregressive models
Expectation-Maximization
Hidden Markov models
machinery health diagnosis
Maintenance engineering
Markov regime-switching models
partial state annotation
Predictive models
semi-supervised learning
system security
Time series analysis
Times series
Training
Transportation
Viterbi algorithm
Title Prediction and Inference in a Partially Hidden Markov-switching Framework with Autoregression. Application to Machinery Health Diagnosis
URI https://ieeexplore.ieee.org/document/9643282
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-AkydUMH6nB492bLT76JGgBEw0HCDhRrr2zSySzcDQ6F_gn23bjRGNB7PL0uRtS1-7vo_f-z2EbkJghhcsIdITEdHnLSWRoIqEiW3G6EkuLcr3KRjP2cPCXzTQbV0LAwAWfAaOubW5fJXLrQmV9Qx3lHYRmqgZRkFZq1U7Vya8WVXoeC7vTYazwcTv60v7gH3P0hTyHx1U7AEyaqPH3atL3MiLsy1iR37-YmX877cdou6-VA9P60PoCDUgO0btXa8GXG3dDvqark1KxqgBi0zhSS2d6gE8NStIrFYfeGw4RTJsanjyN7J5TwuLtsSjHYoLm9AtHhjuA3guUbSZgwf7RDguci1upGCtn2cBZviuhPSlmy6aj-5nwzGpujCQtO_SgmiDSWg7jcbam-WJ1rmQ1FUBU74PUjsr4Mf6jyqCWEYsdmmSeMLAqbSpGEqmFKMnqJXlGZwiLDhnCadcaCnGQEVe4McMggR8pSJwz1DHTOzytSTaWFZzev738AU6MKotCwMvUatYb-FKWwhFfG2Xxjdgu74c
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pCBeO3PXi0c6Pt2I4EJZsC4QAJN9K1nVkkm4Gh0b_AP9u2GyMaD2aXpcnblr52fR-_93sA3HQk0bxgMeIO85A6bzHyGBaoE5tmjA73uUH5jtxgSh5ndFYDt1UtjJTSgM-kpW9NLl9kfK1DZXeaO0q5CDtglxJCaFGtVblXOsBZ1ug4tn8X9ibdkLbVpbzAtmOICv0fPVTMEdJvgOHm5QVy5MVa55HFP3_xMv736w5Aa1usB8fVMXQIajI9Ao1NtwZYbt4m-BovdVJGKwKyVMCwkk7UABzrNcQWiw8YaFaRFOoqnuwNrd6T3OAtYX-D44I6eAu7mv1APhc42tSC3W0qHOaZEtdScqmeZyBm8L4A9SWrFpj2Hya9AJV9GFDStnGOlMnElKWGI-XP-rHSOuPYFi4RlEqu3BVJI_VPZW7EPRLZOI4dpgFVyljscCIEwcegnmapPAGQ-T6JfewzJUWIFJ7j0ohIN5ZUCE_ap6CpJ3b-WlBtzMs5Pft7-BrsBZPhYD4IR0_nYF-ruSgTvAD1fLmWl8peyKMrs0y-AXvnwWk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+International+Conference+on+Tools+with+Artificial+Intelligence%2C+TAI&rft.atitle=Prediction+and+Inference+in+a+Partially+Hidden+Markov-switching+Framework+with+Autoregression.+Application+to+Machinery+Health+Diagnosis&rft.au=Dama%2C+Fatoumata&rft.au=Sinoquet%2C+Christine&rft.date=2021-11-01&rft.pub=IEEE&rft.eissn=2375-0197&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FICTAI52525.2021.00009&rft.externalDocID=9643282