Medical Formulation Recognition (MFR) using Deep Feature Learning and One Class SVM

Specials medications are personalized formulations manufactured on demand for patients with unique prescription requirements and constitute an essential component of patient treatment. Specials are becoming increasingly in demand due to the need for personalized and precision medicine. The timely pr...

Full description

Saved in:
Bibliographic Details
Published inProceedings of ... International Joint Conference on Neural Networks pp. 1 - 7
Main Authors Kawi, Omar, Clawson, Kathy, Dunn, Paul, Knight, Daniel, Hodgson, Jonathan, Peng, Yonghong
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2020
Subjects
Online AccessGet full text
ISSN2161-4407
DOI10.1109/IJCNN48605.2020.9206955

Cover

Abstract Specials medications are personalized formulations manufactured on demand for patients with unique prescription requirements and constitute an essential component of patient treatment. Specials are becoming increasingly in demand due to the need for personalized and precision medicine. The timely provision of optimal personalized medicine, however, is challenging, subject to strict regulatory processes, and is expert intensive. In this paper, we propose a new medical formulation engine (MFE) that performs semantic search across multiple disparate formulations archives to enable data driven formulation intelligence. We develop a new platform for medical formulations recognition (MFR) that curates a new dataset comprising formulations and non-formulations (clinical) text and uses a novel pipeline encompassing deep feature extraction and one-class support vector machine learning. The proposed MFR framework demonstrates promising performance and can be used as a benchmark for future research in formulations recognition.
AbstractList Specials medications are personalized formulations manufactured on demand for patients with unique prescription requirements and constitute an essential component of patient treatment. Specials are becoming increasingly in demand due to the need for personalized and precision medicine. The timely provision of optimal personalized medicine, however, is challenging, subject to strict regulatory processes, and is expert intensive. In this paper, we propose a new medical formulation engine (MFE) that performs semantic search across multiple disparate formulations archives to enable data driven formulation intelligence. We develop a new platform for medical formulations recognition (MFR) that curates a new dataset comprising formulations and non-formulations (clinical) text and uses a novel pipeline encompassing deep feature extraction and one-class support vector machine learning. The proposed MFR framework demonstrates promising performance and can be used as a benchmark for future research in formulations recognition.
Author Clawson, Kathy
Dunn, Paul
Kawi, Omar
Peng, Yonghong
Hodgson, Jonathan
Knight, Daniel
Author_xml – sequence: 1
  givenname: Omar
  surname: Kawi
  fullname: Kawi, Omar
  organization: University of Sunderland,Faculty of Technology,Sunderland,UK
– sequence: 2
  givenname: Kathy
  surname: Clawson
  fullname: Clawson, Kathy
  organization: University of Sunderland,Faculty of Technology,Sunderland,UK
– sequence: 3
  givenname: Paul
  surname: Dunn
  fullname: Dunn, Paul
  organization: Rokshaw Laboratories,Quality Department,Sunderland,UK
– sequence: 4
  givenname: Daniel
  surname: Knight
  fullname: Knight, Daniel
  organization: Rokshaw Laboratories,Quality Department,Sunderland,UK
– sequence: 5
  givenname: Jonathan
  surname: Hodgson
  fullname: Hodgson, Jonathan
  organization: Rokshaw Laboratories,Quality Department,Sunderland,UK
– sequence: 6
  givenname: Yonghong
  surname: Peng
  fullname: Peng, Yonghong
  organization: Manchester Metropolitan University,Department of Computing & Mathematics
BookMark eNotUM1OwzAYCwgk1sETcCBHOLR8Sdo0OaKOwlC7SRtwndL26xTUpVN_Drw9BXayZVuWZY9cuNYhIXcMAsZAPy7fktUqVBKigAOHQHOQOorOiMdirpjUXMbnZMaZZH4YQnxFvL7_AuBCazEj2xwrW5qGpm13GBsz2NbRDZbt3tk_fp-nmwc69tbt6QLxSFM0w9ghzdB07lc1rqJrhzRpTN_T7Wd-TS5r0_R4c8I5-Uif35NXP1u_LJOnzLccxOBLxpjkcSWMnkYjL3mE0kRQFEoUgleiUjWUChFAiXoKa8NiqEI9mVhqJebk9r_XIuLu2NmD6b53pwPEDxKVUIk
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IJCNN48605.2020.9206955
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1728169267
9781728169262
EISSN 2161-4407
EndPage 7
ExternalDocumentID 9206955
Genre orig-research
GroupedDBID 29I
29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-6111627d3a9920e2c25e6a50bb83b32d3d8f0c8ee0083f1119a170d49b32ec983
IEDL.DBID RIE
IngestDate Wed Aug 27 02:31:21 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-6111627d3a9920e2c25e6a50bb83b32d3d8f0c8ee0083f1119a170d49b32ec983
PageCount 7
ParticipantIDs ieee_primary_9206955
PublicationCentury 2000
PublicationDate 2020-July
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-July
PublicationDecade 2020
PublicationTitle Proceedings of ... International Joint Conference on Neural Networks
PublicationTitleAbbrev IJCNN
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023993
Score 1.7639304
Snippet Specials medications are personalized formulations manufactured on demand for patients with unique prescription requirements and constitute an essential...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Deep Learning
Drugs
Feature extraction
NLP
One-Class Learning
Principal component analysis
Stability analysis
Support Vector Machine
Support vector machines
Text Recognition
Training
Title Medical Formulation Recognition (MFR) using Deep Feature Learning and One Class SVM
URI https://ieeexplore.ieee.org/document/9206955
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bTp6mbuI3OXhQsF2aNmlznpY56JTNyW4jTV-HCN0Y7cW_3qTNJooHb498kPBCeO8lv_d-CN3QTHKZ-_qmCSadIORMSyR1cvAk5UxJUZcUSiZ8NA_GC7Zooft9LgwA1OAzcI1Y_-Vna1WZp7KBoIQLxtqoHUa8ydXaB1fG0Fr8lkfE4Gk8nEwMwRLTMSAlrp36g0OlNiFxFyW7xRvkyIdblamrPn_VZfzv7g5R_ztZD7_szdARakFxjLo7tgZsL28PzeyfDI61m2pJu_B0hx_S8m0ST--wAcKv8APABhv3sNoCtjVYV1gWGX4uANdMmnj2lvTRPH58HY4cS6ngvFPilzpQ9DxOw8yXQm8XqKIMuGQkTSM_9WnmZ1FOVARgXLNcDxbSC0kWCN0JSkT-CeoU6wJOEVZMKghTkjMeBiTjUjtPYQ4B-Ln0Uo-doZ7R0XLTVM1YWvWc_918gQ7MOTVA2EvUKbcVXGlzX6bX9Tl_AYahqN4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDDAVaBFvPDCARFLHiZ14LkRtaQLqA3WrnORSIaS0qpKFX4-dpEUgBraTH7J1lnV39nf3IXRLE8llaqubJpg0HJczJZHISMGSlLNYirKkUBDy3tQZzNhsBz1sc2EAoASfganF8i8_WcaFfirrCEq4YGwX7THHcViVrbUNr7SprRFcFhGd_qAbhppiiakokBKznvyDRaU0In4TBZvlK-zIh1nkkRl__qrM-N_9HaL2d7oeft0aoiO0A9kxam74GnB9fVtoXP_KYF85qjVtFx5tEERKvgv80T3WUPgFfgRYYe0gFmvAdRXWBZZZgl8ywCWXJh6_BW009Z8m3Z5RkyoY75TYuQoVLYtTN7GlUNsFGlMGXDISRZ4d2TSxEy8lsQegnbNUDRbSckniCNUJsfDsE9TIlhmcIhwzGYMbkZRx1yEJl8p9clNwwE6lFVnsDLW0juarqm7GvFbP-d_NN2i_NwmG82E_fL5AB_rMKljsJWrk6wKulPHPo-vyzL8Aj8msKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+...+International+Joint+Conference+on+Neural+Networks&rft.atitle=Medical+Formulation+Recognition+%28MFR%29+using+Deep+Feature+Learning+and+One+Class+SVM&rft.au=Kawi%2C+Omar&rft.au=Clawson%2C+Kathy&rft.au=Dunn%2C+Paul&rft.au=Knight%2C+Daniel&rft.date=2020-07-01&rft.pub=IEEE&rft.eissn=2161-4407&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FIJCNN48605.2020.9206955&rft.externalDocID=9206955