A New Optimization Algorithm for Parameters Identification of Electric Vehicles' Battery
This study deals with parameter identification of behavioral model of the electric vehicle's (EV) battery, which can be cast as a difficult optimization problem. This necessitates the employment of a powerful and global optimization algorithm to ensure the reliability of the results. In this st...
Saved in:
| Published in | IEEE Power & Energy Society General Meeting pp. 1 - 5 |
|---|---|
| Main Authors | , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
02.08.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1944-9933 |
| DOI | 10.1109/PESGM41954.2020.9281786 |
Cover
| Abstract | This study deals with parameter identification of behavioral model of the electric vehicle's (EV) battery, which can be cast as a difficult optimization problem. This necessitates the employment of a powerful and global optimization algorithm to ensure the reliability of the results. In this study, a newly developed optimization technique referred to as evolutionary-particle swarm optimization (E-PSO) is implemented. A statistical analysis is conducted, and the proposed algorithm is compared with other widespread metaheuristic algorithms in terms of convergence and simulation time. To do so, first, the current of the battery is determined using a typical EV model and a standard driving cycle. Then, experimental tests are conducted on Lithium Polymer off the shelf cell to calculate the actual terminal voltage. Finally, this actual data is used in an optimization frame to calculate the parameters of the model by which the behavioral model and the real battery are in the closest agreement. The results show that the E-PSO algorithm outperforms other metaheuristic optimization algorithms in terms of finding better solution in a lower convergence time. It is also demonstrated that the solution obtained by E-PSO provides a more accurate estimation of the actual battery. |
|---|---|
| AbstractList | This study deals with parameter identification of behavioral model of the electric vehicle's (EV) battery, which can be cast as a difficult optimization problem. This necessitates the employment of a powerful and global optimization algorithm to ensure the reliability of the results. In this study, a newly developed optimization technique referred to as evolutionary-particle swarm optimization (E-PSO) is implemented. A statistical analysis is conducted, and the proposed algorithm is compared with other widespread metaheuristic algorithms in terms of convergence and simulation time. To do so, first, the current of the battery is determined using a typical EV model and a standard driving cycle. Then, experimental tests are conducted on Lithium Polymer off the shelf cell to calculate the actual terminal voltage. Finally, this actual data is used in an optimization frame to calculate the parameters of the model by which the behavioral model and the real battery are in the closest agreement. The results show that the E-PSO algorithm outperforms other metaheuristic optimization algorithms in terms of finding better solution in a lower convergence time. It is also demonstrated that the solution obtained by E-PSO provides a more accurate estimation of the actual battery. |
| Author | Cotton, James S. Lorestani, Alireza Ahmed, Ryan Chebeir, Jorge |
| Author_xml | – sequence: 1 givenname: Alireza surname: Lorestani fullname: Lorestani, Alireza – sequence: 2 givenname: Jorge surname: Chebeir fullname: Chebeir, Jorge – sequence: 3 givenname: Ryan surname: Ahmed fullname: Ahmed, Ryan – sequence: 4 givenname: James S. surname: Cotton fullname: Cotton, James S. |
| BookMark | eNotUEtPAjEYrEYTAfkFHuzN02K_PnbbI5IVSVBIfMQbWbpfpWYfpNuE4K93E5jLzGEymZkhuWraBgm5BzYBYOZxnb_PXyUYJSeccTYxXEOm0wsyhKyXSjGtL8kAjJSJMULckHHX_bIeSmZpygfke0rf8EBX--hr_1dE3zZ0Wv20wcddTV0b6LoIRY0RQ0cXJTbRO29PvtbRvEIbg7f0C3feVtg90Kci9ubjLbl2RdXh-Mwj8vmcf8xekuVqvphNl4nnTMREiVRiaXQKCErwsq-6tZkBywF4uUVntNtmwKTR3Fqd9YM4MzYVsnRWGSVG5O6U6xFxsw--LsJxcz5C_AOsPFRu |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/PESGM41954.2020.9281786 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 1728155088 9781728155081 |
| EISSN | 1944-9933 |
| EndPage | 5 |
| ExternalDocumentID | 9281786 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP M43 OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i203t-5364ed9861e1532d194bc791c2112dbef98fb7104982cc87088209c634dfc5953 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:33:54 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-5364ed9861e1532d194bc791c2112dbef98fb7104982cc87088209c634dfc5953 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9281786 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Aug.-2 |
| PublicationDateYYYYMMDD | 2020-08-02 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-Aug.-2 day: 02 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE Power & Energy Society General Meeting |
| PublicationTitleAbbrev | PESGM |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000547662 |
| Score | 2.1238966 |
| Snippet | This study deals with parameter identification of behavioral model of the electric vehicle's (EV) battery, which can be cast as a difficult optimization... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | batteries mathematical model metaheuristic optimization algorithms Parameter identification |
| Title | A New Optimization Algorithm for Parameters Identification of Electric Vehicles' Battery |
| URI | https://ieeexplore.ieee.org/document/9281786 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFH60PenFpRV35iB4MWkymZlkjkVaRagWtNJb6SyxRdtISQ_6632TxLrgwUsIgZAwL3nbfN_3AM7cDkmgTOy5wstjzBpPxQaLFatFYBOeqMgRnPu34nrIbkZ8VIOLNRfGWluAz6zvTou9fJPplWuVtSVNwjgRdajjseRqrfspmHrEQtAKwhUGsj3o3l_1mVM0wzKQBn51948xKkUU6W1B__P5JXjk2V_lytfvv6QZ__uC29D64uuRwToS7UDNLnZh85vUYBNGHYL-jNyhh5hX1EvSeXnKlrN8OieYuZLBxOG0nNgmKdm7adXOI1lKusW0nJkmj3ZaAOnOSanM-daCYa_7cHntVVMVvBkNotzjkUCLyESEFr0dNaFkSscy1FgKUqNsKpNUYd7BZEK1xt8Zc_BAahExk2ouebQHjUW2sPtAJlbxWE2oy_qYnQRKxdxoyTEC4odh1AE03RqNX0vhjHG1PId_Xz6CDWenAl1Hj6GRL1f2BCN-rk4LU38AcmirRw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFH5BPKgXFzDuzsHEi63tdKbtHIkBUSmSCIYb6SwVolBDykF_vTNtxSUevDVNmkzmdd423_c9gDNzQ-JwGVim8LIIUdLigdTFihK-o0Iacs8QnKOu3x6Q2yEdVuBiyYVRSuXgM2Wbx_wuX6ZiYVpllwyHbhD6K7BKCSG0YGstOyo6-Qh8H5cgLtdhl73mw3VEjKaZLgSxY5ff_xikkseR1iZEnyso4CPP9iLjtnj_Jc743yVuQf2LsYd6y1i0DRU124GNb2KDNRg2kPZo6F77iGlJvkSNl6d0PsnGU6RzV9SLDVLLyG2igr-blA09lCaomc_LmQj0qMY5lO4cFdqcb3UYtJr9q7ZVzlWwJtjxMot6vrYJC31XaX-HpcsIFwFzhS4GseQqYWHCdeZBWIiF0AdaZ-EOE75HZCIoo94uVGfpTO0BihWnAY-xyfuIih3OAyoFozoG6l9D8n2omT0avRbSGaNyew7-fn0Ka-1-1Bl1brp3h7BubJZj7fARVLP5Qh3r-J_xk9zsH5l1rpQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+Power+%26+Energy+Society+General+Meeting&rft.atitle=A+New+Optimization+Algorithm+for+Parameters+Identification+of+Electric+Vehicles%27+Battery&rft.au=Lorestani%2C+Alireza&rft.au=Chebeir%2C+Jorge&rft.au=Ahmed%2C+Ryan&rft.au=Cotton%2C+James+S.&rft.date=2020-08-02&rft.pub=IEEE&rft.eissn=1944-9933&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FPESGM41954.2020.9281786&rft.externalDocID=9281786 |