A New Optimization Algorithm for Parameters Identification of Electric Vehicles' Battery

This study deals with parameter identification of behavioral model of the electric vehicle's (EV) battery, which can be cast as a difficult optimization problem. This necessitates the employment of a powerful and global optimization algorithm to ensure the reliability of the results. In this st...

Full description

Saved in:
Bibliographic Details
Published inIEEE Power & Energy Society General Meeting pp. 1 - 5
Main Authors Lorestani, Alireza, Chebeir, Jorge, Ahmed, Ryan, Cotton, James S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 02.08.2020
Subjects
Online AccessGet full text
ISSN1944-9933
DOI10.1109/PESGM41954.2020.9281786

Cover

Abstract This study deals with parameter identification of behavioral model of the electric vehicle's (EV) battery, which can be cast as a difficult optimization problem. This necessitates the employment of a powerful and global optimization algorithm to ensure the reliability of the results. In this study, a newly developed optimization technique referred to as evolutionary-particle swarm optimization (E-PSO) is implemented. A statistical analysis is conducted, and the proposed algorithm is compared with other widespread metaheuristic algorithms in terms of convergence and simulation time. To do so, first, the current of the battery is determined using a typical EV model and a standard driving cycle. Then, experimental tests are conducted on Lithium Polymer off the shelf cell to calculate the actual terminal voltage. Finally, this actual data is used in an optimization frame to calculate the parameters of the model by which the behavioral model and the real battery are in the closest agreement. The results show that the E-PSO algorithm outperforms other metaheuristic optimization algorithms in terms of finding better solution in a lower convergence time. It is also demonstrated that the solution obtained by E-PSO provides a more accurate estimation of the actual battery.
AbstractList This study deals with parameter identification of behavioral model of the electric vehicle's (EV) battery, which can be cast as a difficult optimization problem. This necessitates the employment of a powerful and global optimization algorithm to ensure the reliability of the results. In this study, a newly developed optimization technique referred to as evolutionary-particle swarm optimization (E-PSO) is implemented. A statistical analysis is conducted, and the proposed algorithm is compared with other widespread metaheuristic algorithms in terms of convergence and simulation time. To do so, first, the current of the battery is determined using a typical EV model and a standard driving cycle. Then, experimental tests are conducted on Lithium Polymer off the shelf cell to calculate the actual terminal voltage. Finally, this actual data is used in an optimization frame to calculate the parameters of the model by which the behavioral model and the real battery are in the closest agreement. The results show that the E-PSO algorithm outperforms other metaheuristic optimization algorithms in terms of finding better solution in a lower convergence time. It is also demonstrated that the solution obtained by E-PSO provides a more accurate estimation of the actual battery.
Author Cotton, James S.
Lorestani, Alireza
Ahmed, Ryan
Chebeir, Jorge
Author_xml – sequence: 1
  givenname: Alireza
  surname: Lorestani
  fullname: Lorestani, Alireza
– sequence: 2
  givenname: Jorge
  surname: Chebeir
  fullname: Chebeir, Jorge
– sequence: 3
  givenname: Ryan
  surname: Ahmed
  fullname: Ahmed, Ryan
– sequence: 4
  givenname: James S.
  surname: Cotton
  fullname: Cotton, James S.
BookMark eNotUEtPAjEYrEYTAfkFHuzN02K_PnbbI5IVSVBIfMQbWbpfpWYfpNuE4K93E5jLzGEymZkhuWraBgm5BzYBYOZxnb_PXyUYJSeccTYxXEOm0wsyhKyXSjGtL8kAjJSJMULckHHX_bIeSmZpygfke0rf8EBX--hr_1dE3zZ0Wv20wcddTV0b6LoIRY0RQ0cXJTbRO29PvtbRvEIbg7f0C3feVtg90Kci9ubjLbl2RdXh-Mwj8vmcf8xekuVqvphNl4nnTMREiVRiaXQKCErwsq-6tZkBywF4uUVntNtmwKTR3Fqd9YM4MzYVsnRWGSVG5O6U6xFxsw--LsJxcz5C_AOsPFRu
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/PESGM41954.2020.9281786
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728155088
9781728155081
EISSN 1944-9933
EndPage 5
ExternalDocumentID 9281786
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-5364ed9861e1532d194bc791c2112dbef98fb7104982cc87088209c634dfc5953
IEDL.DBID RIE
IngestDate Wed Aug 27 02:33:54 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-5364ed9861e1532d194bc791c2112dbef98fb7104982cc87088209c634dfc5953
PageCount 5
ParticipantIDs ieee_primary_9281786
PublicationCentury 2000
PublicationDate 2020-Aug.-2
PublicationDateYYYYMMDD 2020-08-02
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-Aug.-2
  day: 02
PublicationDecade 2020
PublicationTitle IEEE Power & Energy Society General Meeting
PublicationTitleAbbrev PESGM
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000547662
Score 2.1238966
Snippet This study deals with parameter identification of behavioral model of the electric vehicle's (EV) battery, which can be cast as a difficult optimization...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms batteries
mathematical model
metaheuristic optimization algorithms
Parameter identification
Title A New Optimization Algorithm for Parameters Identification of Electric Vehicles' Battery
URI https://ieeexplore.ieee.org/document/9281786
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFH60PenFpRV35iB4MWkymZlkjkVaRagWtNJb6SyxRdtISQ_6632TxLrgwUsIgZAwL3nbfN_3AM7cDkmgTOy5wstjzBpPxQaLFatFYBOeqMgRnPu34nrIbkZ8VIOLNRfGWluAz6zvTou9fJPplWuVtSVNwjgRdajjseRqrfspmHrEQtAKwhUGsj3o3l_1mVM0wzKQBn51948xKkUU6W1B__P5JXjk2V_lytfvv6QZ__uC29D64uuRwToS7UDNLnZh85vUYBNGHYL-jNyhh5hX1EvSeXnKlrN8OieYuZLBxOG0nNgmKdm7adXOI1lKusW0nJkmj3ZaAOnOSanM-daCYa_7cHntVVMVvBkNotzjkUCLyESEFr0dNaFkSscy1FgKUqNsKpNUYd7BZEK1xt8Zc_BAahExk2ouebQHjUW2sPtAJlbxWE2oy_qYnQRKxdxoyTEC4odh1AE03RqNX0vhjHG1PId_Xz6CDWenAl1Hj6GRL1f2BCN-rk4LU38AcmirRw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFH5BPKgXFzDuzsHEi63tdKbtHIkBUSmSCIYb6SwVolBDykF_vTNtxSUevDVNmkzmdd423_c9gDNzQ-JwGVim8LIIUdLigdTFihK-o0Iacs8QnKOu3x6Q2yEdVuBiyYVRSuXgM2Wbx_wuX6ZiYVpllwyHbhD6K7BKCSG0YGstOyo6-Qh8H5cgLtdhl73mw3VEjKaZLgSxY5ff_xikkseR1iZEnyso4CPP9iLjtnj_Jc743yVuQf2LsYd6y1i0DRU124GNb2KDNRg2kPZo6F77iGlJvkSNl6d0PsnGU6RzV9SLDVLLyG2igr-blA09lCaomc_LmQj0qMY5lO4cFdqcb3UYtJr9q7ZVzlWwJtjxMot6vrYJC31XaX-HpcsIFwFzhS4GseQqYWHCdeZBWIiF0AdaZ-EOE75HZCIoo94uVGfpTO0BihWnAY-xyfuIih3OAyoFozoG6l9D8n2omT0avRbSGaNyew7-fn0Ka-1-1Bl1brp3h7BubJZj7fARVLP5Qh3r-J_xk9zsH5l1rpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+Power+%26+Energy+Society+General+Meeting&rft.atitle=A+New+Optimization+Algorithm+for+Parameters+Identification+of+Electric+Vehicles%27+Battery&rft.au=Lorestani%2C+Alireza&rft.au=Chebeir%2C+Jorge&rft.au=Ahmed%2C+Ryan&rft.au=Cotton%2C+James+S.&rft.date=2020-08-02&rft.pub=IEEE&rft.eissn=1944-9933&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FPESGM41954.2020.9281786&rft.externalDocID=9281786