Machine Learning Approaches for Quantitative Viscoelastic Response (QVisR) Ultrasound

We present a quantitative extension of Viscoelastic Response (VisR) ultrasound that estimates shear elastic and viscous moduli from on-axis VisR displacement profiles in silico. Isotropic, homogeneous, linearly viscoelastic materials ranging from 1.57-33.33 kPa shear elasticity and 0.0033-2.34 Pa.s...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Ultrasonics Symposium (Online) pp. 1 - 3
Main Authors Richardson, Joseph B., Moore, Christopher J., Anand, Keerthi S., Yokoyama, Keita A., Gallippi, Caterina M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 07.09.2020
Subjects
Online AccessGet full text
ISSN1948-5727
DOI10.1109/IUS46767.2020.9251830

Cover

Abstract We present a quantitative extension of Viscoelastic Response (VisR) ultrasound that estimates shear elastic and viscous moduli from on-axis VisR displacement profiles in silico. Isotropic, homogeneous, linearly viscoelastic materials ranging from 1.57-33.33 kPa shear elasticity and 0.0033-2.34 Pa.s shear viscosity subject to a VisR beamsequence at 26 focal depths were simulated. Multi-target regression machine learning models were used to estimate shear elasticity and shear viscosity given the displacement profile, focal depth, and axial depth. The best performing models achieve a shear elasticity RMSE of 0.29 kPa and a shear viscosity RMSE of 0.13 Pa.s when predictions were made on the test set. These results suggest that machine learning methods can be used to quantitatively estimate viscoelasticity from VisR displacement profiles.
AbstractList We present a quantitative extension of Viscoelastic Response (VisR) ultrasound that estimates shear elastic and viscous moduli from on-axis VisR displacement profiles in silico. Isotropic, homogeneous, linearly viscoelastic materials ranging from 1.57-33.33 kPa shear elasticity and 0.0033-2.34 Pa.s shear viscosity subject to a VisR beamsequence at 26 focal depths were simulated. Multi-target regression machine learning models were used to estimate shear elasticity and shear viscosity given the displacement profile, focal depth, and axial depth. The best performing models achieve a shear elasticity RMSE of 0.29 kPa and a shear viscosity RMSE of 0.13 Pa.s when predictions were made on the test set. These results suggest that machine learning methods can be used to quantitatively estimate viscoelasticity from VisR displacement profiles.
Author Moore, Christopher J.
Richardson, Joseph B.
Anand, Keerthi S.
Yokoyama, Keita A.
Gallippi, Caterina M.
Author_xml – sequence: 1
  givenname: Joseph B.
  surname: Richardson
  fullname: Richardson, Joseph B.
  organization: North Carolina State University,Department of Electrical and Computer Engineering,Raleigh,NC,USA
– sequence: 2
  givenname: Christopher J.
  surname: Moore
  fullname: Moore, Christopher J.
  organization: North Carolina State University,Department of Electrical and Computer Engineering,Raleigh,NC,USA
– sequence: 3
  givenname: Keerthi S.
  surname: Anand
  fullname: Anand, Keerthi S.
  organization: University of North Carolina at Chapel Hill,Joint Department of Biomedical Engineering,Chapel Hill,NC,USA
– sequence: 4
  givenname: Keita A.
  surname: Yokoyama
  fullname: Yokoyama, Keita A.
  organization: University of North Carolina at Chapel Hill,Joint Department of Biomedical Engineering,Chapel Hill,NC,USA
– sequence: 5
  givenname: Caterina M.
  surname: Gallippi
  fullname: Gallippi, Caterina M.
  organization: University of North Carolina at Chapel Hill,Joint Department of Biomedical Engineering,Chapel Hill,NC,USA
BookMark eNotkM1KAzEURqMo2NY-gQhZ6mLGm5tMMlmW4k-hIq2O25LO3GikZobJVPDtLdjVgbM48H1jdhbbSIxdC8iFAHu3qF6VNtrkCAi5xUKUEk7YWBgsRaFUCadsJKwqs8KguWDTlL4AQEoEg8WIVc-u_gyR-JJcH0P84LOu69uDpMR92_PV3sUhDG4IP8TfQ6pb2rk0hJqvKXVtTMRvVge_vuXVbuhdavexuWTn3u0STY-csOrh_m3-lC1fHhfz2TILCHLICjRktCVnqERLyjfSe9TaS-3gsMU2WpptqcGI2lhjG7TW1VsQKMBvlZITdvXfDUS06frw7frfzfEF-QcgxFMn
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IUS46767.2020.9251830
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728154480
9781728154480
EISSN 1948-5727
EndPage 3
ExternalDocumentID 9251830
Genre orig-research
GrantInformation_xml – fundername: NIH
  grantid: 1R01DK107740,1R01NS074057,2R01HL092944
  funderid: 10.13039/100000002
GroupedDBID 6IE
6IH
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-527e769ea7e829e4fd3ff266f36a09259d637b86071c7979d299acb01210fb443
IEDL.DBID RIE
IngestDate Wed Aug 27 02:34:16 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-527e769ea7e829e4fd3ff266f36a09259d637b86071c7979d299acb01210fb443
PageCount 3
ParticipantIDs ieee_primary_9251830
PublicationCentury 2000
PublicationDate 2020-Sept.-7
PublicationDateYYYYMMDD 2020-09-07
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-Sept.-7
  day: 07
PublicationDecade 2020
PublicationTitle IEEE International Ultrasonics Symposium (Online)
PublicationTitleAbbrev IUS
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003320725
Score 1.7706654
Snippet We present a quantitative extension of Viscoelastic Response (VisR) ultrasound that estimates shear elastic and viscous moduli from on-axis VisR displacement...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Acoustic Radiation Force (ARF)
Acoustics
Elasticity
Elastography
Force
Machine learning
Predictive models
Ultrasonic imaging
Viscoelastic Response (VisR)
Viscoelasticity
Viscosity
Title Machine Learning Approaches for Quantitative Viscoelastic Response (QVisR) Ultrasound
URI https://ieeexplore.ieee.org/document/9251830
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NS8MwGMbD3EkvfmziNzl4ULBd2rRJcxRxTGHippXdRtK-kaF0srUX_3qTtM4PPHgrgZKQlD55k_f5vQidUpppnuncAx4ozxKwPMEC5kFsxJjkRAtXzmd4xwZpdDuJJy10sfLCAIBLPgPfPrq7_HyeVfaorCeMGCfUBOhrPGG1V2t1nkJpSHgYNyadgIjeTfoQWRyZCQJD4jfv_iii4jSkv4mGn73XqSMvflUqP3v_BWb87_C2UPfLrYfvVzq0jVpQ7KCNb6DBDkqHLmcScINTfcaXDUsclthsW_GokoWzm5mfH36aLbM5mG21-ajwuE6iBXw2Mu3jc5y-lgu5tNWYuijtXz9eDbymoII3CwktTdDJgTMBkkMSCoh0TrU2Cq0pk8SMXuSMcpVY5FzGBRe50SqZKYt9I1pFEd1F7WJewB7CRFAlFKEqptoy35OYCREDV1IGmkqyjzp2gqZvNTNj2szNwd_Nh2jdLpLL3eJHqF0uKjg2Yl-qE7fKH2qKqKo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NT4MwGMabZR7Uix-b8dsePGgiW6FA6dEYl03H4uYwuy0tvDWLhpkNLv71toDzIx68kSZA0zY8fcv7_F6EzimNFYtVYgGzpWUIWBb3bd8CT4sxSYjiRTmfcOB3I_du4k1q6GrlhQGAIvkMWuay-JefzOPcHJW1uRbjgOoAfc1z9WNLt9bqRIVShzDHq2w6NuHtXvToGiCZDgMd0qru_lFGpVCRzhYKP99fJo-8tPJMtuL3X2jG_3ZwGzW__Hr4YaVEO6gG6S7a_IYabKAoLLImAVdA1Wd8XdHEYYn1xhUPc5EWhjP9-cNPs2U8B72x1ssKj8o0WsAXQ90-usTRa7YQS1OPqYmizu34pmtVJRWsmUNopsNOBsznIBgEDgdXJVQprdGK-oLo3vPEp0wGBjoXM854otVKxNKA34iSrkv3UD2dp7CPMOFUckmo9Kgy1PfA8zn3gEkhbEUFOUANM0DTt5KaMa3G5vDv5jO03h2H_Wm_N7g_QhtmwopMLnaM6tkihxMt_Zk8LWb8A2-Yq_c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Ultrasonics+Symposium+%28Online%29&rft.atitle=Machine+Learning+Approaches+for+Quantitative+Viscoelastic+Response+%28QVisR%29+Ultrasound&rft.au=Richardson%2C+Joseph+B.&rft.au=Moore%2C+Christopher+J.&rft.au=Anand%2C+Keerthi+S.&rft.au=Yokoyama%2C+Keita+A.&rft.date=2020-09-07&rft.pub=IEEE&rft.eissn=1948-5727&rft.spage=1&rft.epage=3&rft_id=info:doi/10.1109%2FIUS46767.2020.9251830&rft.externalDocID=9251830