Machine Learning Approaches for Quantitative Viscoelastic Response (QVisR) Ultrasound
We present a quantitative extension of Viscoelastic Response (VisR) ultrasound that estimates shear elastic and viscous moduli from on-axis VisR displacement profiles in silico. Isotropic, homogeneous, linearly viscoelastic materials ranging from 1.57-33.33 kPa shear elasticity and 0.0033-2.34 Pa.s...
        Saved in:
      
    
          | Published in | IEEE International Ultrasonics Symposium (Online) pp. 1 - 3 | 
|---|---|
| Main Authors | , , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        07.09.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1948-5727 | 
| DOI | 10.1109/IUS46767.2020.9251830 | 
Cover
| Abstract | We present a quantitative extension of Viscoelastic Response (VisR) ultrasound that estimates shear elastic and viscous moduli from on-axis VisR displacement profiles in silico. Isotropic, homogeneous, linearly viscoelastic materials ranging from 1.57-33.33 kPa shear elasticity and 0.0033-2.34 Pa.s shear viscosity subject to a VisR beamsequence at 26 focal depths were simulated. Multi-target regression machine learning models were used to estimate shear elasticity and shear viscosity given the displacement profile, focal depth, and axial depth. The best performing models achieve a shear elasticity RMSE of 0.29 kPa and a shear viscosity RMSE of 0.13 Pa.s when predictions were made on the test set. These results suggest that machine learning methods can be used to quantitatively estimate viscoelasticity from VisR displacement profiles. | 
    
|---|---|
| AbstractList | We present a quantitative extension of Viscoelastic Response (VisR) ultrasound that estimates shear elastic and viscous moduli from on-axis VisR displacement profiles in silico. Isotropic, homogeneous, linearly viscoelastic materials ranging from 1.57-33.33 kPa shear elasticity and 0.0033-2.34 Pa.s shear viscosity subject to a VisR beamsequence at 26 focal depths were simulated. Multi-target regression machine learning models were used to estimate shear elasticity and shear viscosity given the displacement profile, focal depth, and axial depth. The best performing models achieve a shear elasticity RMSE of 0.29 kPa and a shear viscosity RMSE of 0.13 Pa.s when predictions were made on the test set. These results suggest that machine learning methods can be used to quantitatively estimate viscoelasticity from VisR displacement profiles. | 
    
| Author | Moore, Christopher J. Richardson, Joseph B. Anand, Keerthi S. Yokoyama, Keita A. Gallippi, Caterina M.  | 
    
| Author_xml | – sequence: 1 givenname: Joseph B. surname: Richardson fullname: Richardson, Joseph B. organization: North Carolina State University,Department of Electrical and Computer Engineering,Raleigh,NC,USA – sequence: 2 givenname: Christopher J. surname: Moore fullname: Moore, Christopher J. organization: North Carolina State University,Department of Electrical and Computer Engineering,Raleigh,NC,USA – sequence: 3 givenname: Keerthi S. surname: Anand fullname: Anand, Keerthi S. organization: University of North Carolina at Chapel Hill,Joint Department of Biomedical Engineering,Chapel Hill,NC,USA – sequence: 4 givenname: Keita A. surname: Yokoyama fullname: Yokoyama, Keita A. organization: University of North Carolina at Chapel Hill,Joint Department of Biomedical Engineering,Chapel Hill,NC,USA – sequence: 5 givenname: Caterina M. surname: Gallippi fullname: Gallippi, Caterina M. organization: University of North Carolina at Chapel Hill,Joint Department of Biomedical Engineering,Chapel Hill,NC,USA  | 
    
| BookMark | eNotkM1KAzEURqMo2NY-gQhZ6mLGm5tMMlmW4k-hIq2O25LO3GikZobJVPDtLdjVgbM48H1jdhbbSIxdC8iFAHu3qF6VNtrkCAi5xUKUEk7YWBgsRaFUCadsJKwqs8KguWDTlL4AQEoEg8WIVc-u_gyR-JJcH0P84LOu69uDpMR92_PV3sUhDG4IP8TfQ6pb2rk0hJqvKXVtTMRvVge_vuXVbuhdavexuWTn3u0STY-csOrh_m3-lC1fHhfz2TILCHLICjRktCVnqERLyjfSe9TaS-3gsMU2WpptqcGI2lhjG7TW1VsQKMBvlZITdvXfDUS06frw7frfzfEF-QcgxFMn | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IH CBEJK RIE RIO  | 
    
| DOI | 10.1109/IUS46767.2020.9251830 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISBN | 1728154480 9781728154480  | 
    
| EISSN | 1948-5727 | 
    
| EndPage | 3 | 
    
| ExternalDocumentID | 9251830 | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: NIH grantid: 1R01DK107740,1R01NS074057,2R01HL092944 funderid: 10.13039/100000002  | 
    
| GroupedDBID | 6IE 6IH 6IL 6IN ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO  | 
    
| ID | FETCH-LOGICAL-i203t-527e769ea7e829e4fd3ff266f36a09259d637b86071c7979d299acb01210fb443 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Aug 27 02:34:16 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i203t-527e769ea7e829e4fd3ff266f36a09259d637b86071c7979d299acb01210fb443 | 
    
| PageCount | 3 | 
    
| ParticipantIDs | ieee_primary_9251830 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-Sept.-7 | 
    
| PublicationDateYYYYMMDD | 2020-09-07 | 
    
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-Sept.-7 day: 07  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | IEEE International Ultrasonics Symposium (Online) | 
    
| PublicationTitleAbbrev | IUS | 
    
| PublicationYear | 2020 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0003320725 | 
    
| Score | 1.7706654 | 
    
| Snippet | We present a quantitative extension of Viscoelastic Response (VisR) ultrasound that estimates shear elastic and viscous moduli from on-axis VisR displacement... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1 | 
    
| SubjectTerms | Acoustic Radiation Force (ARF) Acoustics Elasticity Elastography Force Machine learning Predictive models Ultrasonic imaging Viscoelastic Response (VisR) Viscoelasticity Viscosity  | 
    
| Title | Machine Learning Approaches for Quantitative Viscoelastic Response (QVisR) Ultrasound | 
    
| URI | https://ieeexplore.ieee.org/document/9251830 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NS8MwGMbD3EkvfmziNzl4ULBd2rRJcxRxTGHippXdRtK-kaF0srUX_3qTtM4PPHgrgZKQlD55k_f5vQidUpppnuncAx4ozxKwPMEC5kFsxJjkRAtXzmd4xwZpdDuJJy10sfLCAIBLPgPfPrq7_HyeVfaorCeMGCfUBOhrPGG1V2t1nkJpSHgYNyadgIjeTfoQWRyZCQJD4jfv_iii4jSkv4mGn73XqSMvflUqP3v_BWb87_C2UPfLrYfvVzq0jVpQ7KCNb6DBDkqHLmcScINTfcaXDUsclthsW_GokoWzm5mfH36aLbM5mG21-ajwuE6iBXw2Mu3jc5y-lgu5tNWYuijtXz9eDbymoII3CwktTdDJgTMBkkMSCoh0TrU2Cq0pk8SMXuSMcpVY5FzGBRe50SqZKYt9I1pFEd1F7WJewB7CRFAlFKEqptoy35OYCREDV1IGmkqyjzp2gqZvNTNj2szNwd_Nh2jdLpLL3eJHqF0uKjg2Yl-qE7fKH2qKqKo | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NT4MwGMabZR7Uix-b8dsePGgiW6FA6dEYl03H4uYwuy0tvDWLhpkNLv71toDzIx68kSZA0zY8fcv7_F6EzimNFYtVYgGzpWUIWBb3bd8CT4sxSYjiRTmfcOB3I_du4k1q6GrlhQGAIvkMWuay-JefzOPcHJW1uRbjgOoAfc1z9WNLt9bqRIVShzDHq2w6NuHtXvToGiCZDgMd0qru_lFGpVCRzhYKP99fJo-8tPJMtuL3X2jG_3ZwGzW__Hr4YaVEO6gG6S7a_IYabKAoLLImAVdA1Wd8XdHEYYn1xhUPc5EWhjP9-cNPs2U8B72x1ssKj8o0WsAXQ90-usTRa7YQS1OPqYmizu34pmtVJRWsmUNopsNOBsznIBgEDgdXJVQprdGK-oLo3vPEp0wGBjoXM854otVKxNKA34iSrkv3UD2dp7CPMOFUckmo9Kgy1PfA8zn3gEkhbEUFOUANM0DTt5KaMa3G5vDv5jO03h2H_Wm_N7g_QhtmwopMLnaM6tkihxMt_Zk8LWb8A2-Yq_c | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Ultrasonics+Symposium+%28Online%29&rft.atitle=Machine+Learning+Approaches+for+Quantitative+Viscoelastic+Response+%28QVisR%29+Ultrasound&rft.au=Richardson%2C+Joseph+B.&rft.au=Moore%2C+Christopher+J.&rft.au=Anand%2C+Keerthi+S.&rft.au=Yokoyama%2C+Keita+A.&rft.date=2020-09-07&rft.pub=IEEE&rft.eissn=1948-5727&rft.spage=1&rft.epage=3&rft_id=info:doi/10.1109%2FIUS46767.2020.9251830&rft.externalDocID=9251830 |