Depth Inpainting via Vision Transformer
Depth inpainting is a crucial task for working with augmented reality. In previous works missing depth values are completed by convolutional encoder-decoder networks, which is a kind of bottleneck. But nowadays vision transformers showed very good quality in various tasks of computer vision and some...
Saved in:
Published in | 2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct) pp. 286 - 291 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2021
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ISMAR-Adjunct54149.2021.00065 |
Cover
Abstract | Depth inpainting is a crucial task for working with augmented reality. In previous works missing depth values are completed by convolutional encoder-decoder networks, which is a kind of bottleneck. But nowadays vision transformers showed very good quality in various tasks of computer vision and some of them became state of the art. In this study, we presented a supervised method for depth inpainting by RGB images and sparse depth maps via vision transformers. The proposed model was trained and evaluated on the NYUv2 dataset. Experiments showed that a vision transformer with a restrictive convolutional tokenization model can improve the quality of the inpainted depth map. |
---|---|
AbstractList | Depth inpainting is a crucial task for working with augmented reality. In previous works missing depth values are completed by convolutional encoder-decoder networks, which is a kind of bottleneck. But nowadays vision transformers showed very good quality in various tasks of computer vision and some of them became state of the art. In this study, we presented a supervised method for depth inpainting by RGB images and sparse depth maps via vision transformers. The proposed model was trained and evaluated on the NYUv2 dataset. Experiments showed that a vision transformer with a restrictive convolutional tokenization model can improve the quality of the inpainted depth map. |
Author | Borisenko, Gleb Makarov, Ilya |
Author_xml | – sequence: 1 givenname: Ilya surname: Makarov fullname: Makarov, Ilya email: iamakarov@hse.ru organization: HSE University,Moscow,Russia – sequence: 2 givenname: Gleb surname: Borisenko fullname: Borisenko, Gleb organization: HSE University,Moscow,Russia |
BookMark | eNotjs1KxDAYRSPoQsd5AjfdiKvWLz9ffpZl1LEww4COboc0TTTipCWtgm9vQbmLe-DC4V6Q09QnT8g1hYpSMLfN87Z-Kuvu4yu5CQUVpmLAaAUAEk_I0ihNpZwHZrQ-Jzd3fpjeiyYNNqYpprfiO9riNY6xT8U-2zSGPh99viRnwX6OfvnfC_LycL9fPZab3bpZ1ZsyMuBTiVSHwDvZOq4BjUVJeWe0VeCEQ2aZEwqVbgP33fzWCmQ6IAclVAsw04Jc_Xmj9_4w5Hi0-edgUM9R_Bdzx0CF |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISMAR-Adjunct54149.2021.00065 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665412988 1665412984 |
EndPage | 291 |
ExternalDocumentID | 9585857 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i203t-518ff3d6bc38059a5613d98a70c4c52a2c47578bf3ed109a4528f530747b00f53 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:37:20 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-518ff3d6bc38059a5613d98a70c4c52a2c47578bf3ed109a4528f530747b00f53 |
PageCount | 6 |
ParticipantIDs | ieee_primary_9585857 |
PublicationCentury | 2000 |
PublicationDate | 2021-Oct. |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-Oct. |
PublicationDecade | 2020 |
PublicationTitle | 2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct) |
PublicationTitleAbbrev | ISMAR-ADJUNCT |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 2.2697845 |
Snippet | Depth inpainting is a crucial task for working with augmented reality. In previous works missing depth values are completed by convolutional encoder-decoder... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 286 |
SubjectTerms | 3D imaging Artificial intelligence Computational modeling Computational photograph Computer vision Computing methodologies Graph neural networks Human computer interaction (HCI) Human-centered computing Image color analysis Interaction paradigms Mixed / augmented reality Pipelines Reconstruction Tokenization Training Transformers |
Title | Depth Inpainting via Vision Transformer |
URI | https://ieeexplore.ieee.org/document/9585857 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AB-NJDRjf2YPGi11g29LdI1EJmGCMguFG-oxgshCy68Ff73QXMBoP3pomTV9pv5l2vm8ALpXAfZWKEiaNJUzgUZRMaKIkNQlejuhmezby8LHTH7OHCZ9U4GbLhbHWFsFnNvTF4i_fLHTun8qaCfe_WKIKVSGSkqu1A1dr2czm4GXYfSZdM0dAyHx2a89DidphAbM_kqcU2NHbg-Gm1zJk5D3MMxXqz1-CjP8d1j40vll6wdMWfw6gYtM6XN_ZZfYWDNIluvw-pDn4mMngtWCQB6ONlWpXDRj37ke3fbJOhkBmUYtmhLdj56jpKE1jNImkN_xNEkvR0kzzSEaaeWl65ag1uBqS8Sh2nHp9fDxZWDqEWrpI7REEoiXR8GLCuo5jjluJLodE5Be-LdX0GOp-ktNlqXcxXc_v5O_qU9j1y1wGuJ1BLVvl9hyBOlMXxQ59AQX2k6g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gJupJDRjf7kHjxS6wbelyJCoBZYlRMNxIXxvQZCFk8eCvd7oLGI0Hb02Tpq-030w73zcAl0rgvkpFCZPGEibwKEomNFGSmgZejuhmOzZy1Ku3B-xhyIcFuFlzYay1WfCZ9V0x-8s3U71wT2WVBne_WGIDNjl6FSJna23B1VI4s9J5iZrPpGneEBJSl9_aMVGCmp8B7Y_0KRl6tHYhWvWbB428-4tU-frzlyTjfwe2B-Vvnp73tEagfSjYpATXd3aWjr1OMkOn3wU1ex8T6b1mHHKvv7JT7bwMg9Z9_7ZNlukQyCSo0pTwWhjH1NSVpiEaRdKZ_qYRSlHVTPNABpo5cXoVU2twNSTjQRhz6hTy8Wxh6QCKyTSxh-CJqkTTiwkb12MWcyvR6ZCI_cK1pZoeQclNcjTLFS9Gy_kd_119AdvtftQddTu9xxPYcUueh7udQjGdL-wZwnaqzrPd-gL835b5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+International+Symposium+on+Mixed+and+Augmented+Reality+Adjunct+%28ISMAR-Adjunct%29&rft.atitle=Depth+Inpainting+via+Vision+Transformer&rft.au=Makarov%2C+Ilya&rft.au=Borisenko%2C+Gleb&rft.date=2021-10-01&rft.pub=IEEE&rft.spage=286&rft.epage=291&rft_id=info:doi/10.1109%2FISMAR-Adjunct54149.2021.00065&rft.externalDocID=9585857 |