Depth Inpainting via Vision Transformer

Depth inpainting is a crucial task for working with augmented reality. In previous works missing depth values are completed by convolutional encoder-decoder networks, which is a kind of bottleneck. But nowadays vision transformers showed very good quality in various tasks of computer vision and some...

Full description

Saved in:
Bibliographic Details
Published in2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct) pp. 286 - 291
Main Authors Makarov, Ilya, Borisenko, Gleb
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2021
Subjects
Online AccessGet full text
DOI10.1109/ISMAR-Adjunct54149.2021.00065

Cover

Abstract Depth inpainting is a crucial task for working with augmented reality. In previous works missing depth values are completed by convolutional encoder-decoder networks, which is a kind of bottleneck. But nowadays vision transformers showed very good quality in various tasks of computer vision and some of them became state of the art. In this study, we presented a supervised method for depth inpainting by RGB images and sparse depth maps via vision transformers. The proposed model was trained and evaluated on the NYUv2 dataset. Experiments showed that a vision transformer with a restrictive convolutional tokenization model can improve the quality of the inpainted depth map.
AbstractList Depth inpainting is a crucial task for working with augmented reality. In previous works missing depth values are completed by convolutional encoder-decoder networks, which is a kind of bottleneck. But nowadays vision transformers showed very good quality in various tasks of computer vision and some of them became state of the art. In this study, we presented a supervised method for depth inpainting by RGB images and sparse depth maps via vision transformers. The proposed model was trained and evaluated on the NYUv2 dataset. Experiments showed that a vision transformer with a restrictive convolutional tokenization model can improve the quality of the inpainted depth map.
Author Borisenko, Gleb
Makarov, Ilya
Author_xml – sequence: 1
  givenname: Ilya
  surname: Makarov
  fullname: Makarov, Ilya
  email: iamakarov@hse.ru
  organization: HSE University,Moscow,Russia
– sequence: 2
  givenname: Gleb
  surname: Borisenko
  fullname: Borisenko, Gleb
  organization: HSE University,Moscow,Russia
BookMark eNotjs1KxDAYRSPoQsd5AjfdiKvWLz9ffpZl1LEww4COboc0TTTipCWtgm9vQbmLe-DC4V6Q09QnT8g1hYpSMLfN87Z-Kuvu4yu5CQUVpmLAaAUAEk_I0ihNpZwHZrQ-Jzd3fpjeiyYNNqYpprfiO9riNY6xT8U-2zSGPh99viRnwX6OfvnfC_LycL9fPZab3bpZ1ZsyMuBTiVSHwDvZOq4BjUVJeWe0VeCEQ2aZEwqVbgP33fzWCmQ6IAclVAsw04Jc_Xmj9_4w5Hi0-edgUM9R_Bdzx0CF
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISMAR-Adjunct54149.2021.00065
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665412988
1665412984
EndPage 291
ExternalDocumentID 9585857
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-518ff3d6bc38059a5613d98a70c4c52a2c47578bf3ed109a4528f530747b00f53
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:20 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-518ff3d6bc38059a5613d98a70c4c52a2c47578bf3ed109a4528f530747b00f53
PageCount 6
ParticipantIDs ieee_primary_9585857
PublicationCentury 2000
PublicationDate 2021-Oct.
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.
PublicationDecade 2020
PublicationTitle 2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)
PublicationTitleAbbrev ISMAR-ADJUNCT
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.2697845
Snippet Depth inpainting is a crucial task for working with augmented reality. In previous works missing depth values are completed by convolutional encoder-decoder...
SourceID ieee
SourceType Publisher
StartPage 286
SubjectTerms 3D imaging
Artificial intelligence
Computational modeling
Computational photograph
Computer vision
Computing methodologies
Graph neural networks
Human computer interaction (HCI)
Human-centered computing
Image color analysis
Interaction paradigms
Mixed / augmented reality
Pipelines
Reconstruction
Tokenization
Training
Transformers
Title Depth Inpainting via Vision Transformer
URI https://ieeexplore.ieee.org/document/9585857
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AB-NJDRjf2YPGi11g29LdI1EJmGCMguFG-oxgshCy68Ff73QXMBoP3pomTV9pv5l2vm8ALpXAfZWKEiaNJUzgUZRMaKIkNQlejuhmezby8LHTH7OHCZ9U4GbLhbHWFsFnNvTF4i_fLHTun8qaCfe_WKIKVSGSkqu1A1dr2czm4GXYfSZdM0dAyHx2a89DidphAbM_kqcU2NHbg-Gm1zJk5D3MMxXqz1-CjP8d1j40vll6wdMWfw6gYtM6XN_ZZfYWDNIluvw-pDn4mMngtWCQB6ONlWpXDRj37ke3fbJOhkBmUYtmhLdj56jpKE1jNImkN_xNEkvR0kzzSEaaeWl65ag1uBqS8Sh2nHp9fDxZWDqEWrpI7REEoiXR8GLCuo5jjluJLodE5Be-LdX0GOp-ktNlqXcxXc_v5O_qU9j1y1wGuJ1BLVvl9hyBOlMXxQ59AQX2k6g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gJupJDRjf7kHjxS6wbelyJCoBZYlRMNxIXxvQZCFk8eCvd7oLGI0Hb02Tpq-030w73zcAl0rgvkpFCZPGEibwKEomNFGSmgZejuhmOzZy1Ku3B-xhyIcFuFlzYay1WfCZ9V0x-8s3U71wT2WVBne_WGIDNjl6FSJna23B1VI4s9J5iZrPpGneEBJSl9_aMVGCmp8B7Y_0KRl6tHYhWvWbB428-4tU-frzlyTjfwe2B-Vvnp73tEagfSjYpATXd3aWjr1OMkOn3wU1ex8T6b1mHHKvv7JT7bwMg9Z9_7ZNlukQyCSo0pTwWhjH1NSVpiEaRdKZ_qYRSlHVTPNABpo5cXoVU2twNSTjQRhz6hTy8Wxh6QCKyTSxh-CJqkTTiwkb12MWcyvR6ZCI_cK1pZoeQclNcjTLFS9Gy_kd_119AdvtftQddTu9xxPYcUueh7udQjGdL-wZwnaqzrPd-gL835b5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+International+Symposium+on+Mixed+and+Augmented+Reality+Adjunct+%28ISMAR-Adjunct%29&rft.atitle=Depth+Inpainting+via+Vision+Transformer&rft.au=Makarov%2C+Ilya&rft.au=Borisenko%2C+Gleb&rft.date=2021-10-01&rft.pub=IEEE&rft.spage=286&rft.epage=291&rft_id=info:doi/10.1109%2FISMAR-Adjunct54149.2021.00065&rft.externalDocID=9585857