Mining diagnostic knowledge from spacecraft data based on Spark cluster

Compared with the data obtained from ground simulation experiments, the spacecraft telemetry data can better reflect the real working state of the spacecraft. How to effectively utilize telemetry data and extract effective information is an important issue. This paper uses diagnostic data from real...

Full description

Saved in:
Bibliographic Details
Published inIEEE Conference on Industrial Electronics and Applications (Online) pp. 1762 - 1767
Main Authors Wang, Haoran, Yu, Jinsong, Tang, Diyin, Han, Danyang, Tian, Limei, Dai, Jing
Format Conference Proceeding
LanguageEnglish
Published IEEE 09.11.2020
Subjects
Online AccessGet full text
ISSN2158-2297
DOI10.1109/ICIEA48937.2020.9248423

Cover

Abstract Compared with the data obtained from ground simulation experiments, the spacecraft telemetry data can better reflect the real working state of the spacecraft. How to effectively utilize telemetry data and extract effective information is an important issue. This paper uses diagnostic data from real spacecraft telemetry to mine diagnostic knowledge and build a diagnostic knowledge base. Compared with the traditional fault diagnosis method based on expert knowledge, the diagnostic knowledge mined can enrich the existing expert knowledge base. In this paper, the FP-Growth algorithm is used to mine the association rules of the parameters to obtain the diagnostic knowledge, and a satellite telemetry data diagnosis knowledge base is constructed. Mined diagnostic knowledge includes association rules among parameters, and the relationship between parameters and faults. In addition, due to the large number of telemetry parameters, the amount of data reaching TB level, the Spark distributed computing cluster is used to implement distributed and efficient computing of the algorithm. Finally, building a spacecraft telemetry data mining diagnostic platform with the Django architecture.
AbstractList Compared with the data obtained from ground simulation experiments, the spacecraft telemetry data can better reflect the real working state of the spacecraft. How to effectively utilize telemetry data and extract effective information is an important issue. This paper uses diagnostic data from real spacecraft telemetry to mine diagnostic knowledge and build a diagnostic knowledge base. Compared with the traditional fault diagnosis method based on expert knowledge, the diagnostic knowledge mined can enrich the existing expert knowledge base. In this paper, the FP-Growth algorithm is used to mine the association rules of the parameters to obtain the diagnostic knowledge, and a satellite telemetry data diagnosis knowledge base is constructed. Mined diagnostic knowledge includes association rules among parameters, and the relationship between parameters and faults. In addition, due to the large number of telemetry parameters, the amount of data reaching TB level, the Spark distributed computing cluster is used to implement distributed and efficient computing of the algorithm. Finally, building a spacecraft telemetry data mining diagnostic platform with the Django architecture.
Author Han, Danyang
Wang, Haoran
Dai, Jing
Tian, Limei
Tang, Diyin
Yu, Jinsong
Author_xml – sequence: 1
  givenname: Haoran
  surname: Wang
  fullname: Wang, Haoran
  email: begonia_whr@foxmail.com
  organization: Beihang University,School of Automation Science and Electrical Engineering,Beijing,China
– sequence: 2
  givenname: Jinsong
  surname: Yu
  fullname: Yu, Jinsong
  email: yujs@buaa.edu.cn
  organization: Beihang University,School of Automation Science and Electrical Engineering,Beijing,China
– sequence: 3
  givenname: Diyin
  surname: Tang
  fullname: Tang, Diyin
  email: tangdiyin@buaa.edu.cn
  organization: Beihang University,School of Automation Science and Electrical Engineering,Beijing,China
– sequence: 4
  givenname: Danyang
  surname: Han
  fullname: Han, Danyang
  email: hdy_daniel@buaa.edu.cn
  organization: Beihang University,School of Automation Science and Electrical Engineering,Beijing,China
– sequence: 5
  givenname: Limei
  surname: Tian
  fullname: Tian, Limei
  email: Tian_maggie@126.com
  organization: Beijing Institute of Control Engineering,Science and Technology on Space Intelligent Control Loboratory,Beijing,China
– sequence: 6
  givenname: Jing
  surname: Dai
  fullname: Dai, Jing
  email: buaadaij@126.com
  organization: China Academy of Launch Vehicle Technology,Beijing,China
BookMark eNotz7FOwzAUQFGDQKIt_QIG_AMJz89ObI9VVUqkIgZgrhz7JTJtnSoOQvw9A53udqQ7ZzdpSMTYo4BSCLBPzbrZrJSxUpcICKVFZRTKKzYXGo2oRG3VNZuhqEyBaPUdW-b8BQBSaG2kmLHta0wx9TxE16chT9HzQxp-jhR64t04nHg-O09-dN3Eg5scb12mwIfE389uPHB__M4TjffstnPHTMtLF-zzefOxfil2b9tmvdoVEUFOhXJgSNah88Ea7aHqEINRvjJKKxkEUI1UexLYhjo427UtkCKoalcpBSQX7OHfjUS0P4_x5Mbf_eVb_gG8ZE97
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIEA48937.2020.9248423
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728151694
9781728151694
EISSN 2158-2297
EndPage 1767
ExternalDocumentID 9248423
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-4a08e36dfcd987c05f22d84c584743d10e62e6ce12bd6da9fbb0e4e056a5440e3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:33:46 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-4a08e36dfcd987c05f22d84c584743d10e62e6ce12bd6da9fbb0e4e056a5440e3
PageCount 6
ParticipantIDs ieee_primary_9248423
PublicationCentury 2000
PublicationDate 2020-Nov.-9
PublicationDateYYYYMMDD 2020-11-09
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-Nov.-9
  day: 09
PublicationDecade 2020
PublicationTitle IEEE Conference on Industrial Electronics and Applications (Online)
PublicationTitleAbbrev ICIEA
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003177831
Score 1.7425642
Snippet Compared with the data obtained from ground simulation experiments, the spacecraft telemetry data can better reflect the real working state of the spacecraft....
SourceID ieee
SourceType Publisher
StartPage 1762
SubjectTerms association rules
big data mining
Classification algorithms
Clustering algorithms
Data mining
distributed computing
Knowledge based systems
Software algorithms
Space vehicles
Spark cluster
Telemetry
Telemetry data
Title Mining diagnostic knowledge from spacecraft data based on Spark cluster
URI https://ieeexplore.ieee.org/document/9248423
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JasMwEBVJTu2lS1K6o0OPtSPLsiQfS0iaFFIKbSC3oGUMJcUJwb706yvZrrvQQy_GGIyNZOuNZt57g9CNBRZronyFkRp30DyQiUgDTahKwAIB5RP680c-XbCHZbLsoNtWCwMAFfkMQn9a1fLtxpQ-VTZ0ewXp4L-LukLyWqvV5lMcDgoZRw2FKyLpcDaaje-8t4pw20BKwubuH21UKhSZHKD55_Nr8sg6LAsdmvdf1oz_fcFDNPjS6-GnFomOUAfyY7T_zWqwj-7nVScIbGtqnftccJtOw15jgt3SYlwMqbICe9oo9vhm8SbHz1u1W2PzVnpPhQFaTMYvo2nQNFEIXimJi4ApIiHmNjM2lcKQJKPUSmZ8eZTFNiLAKXADEdWWW5VmWhNg4OIilTBGID5BvXyTwynCXGgGgmepdnEXJKk02v2-ELklMibKsDPU90Oy2tY-GatmNM7_vnyB9vy0VLq-9BL1il0JVw7gC31dzewHDQOmHg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGYCFR4t444GRpI7jOMmIqkILTYVEK3Wr_LhIqCitqmTh12MnITzEwGJFliJZ58Tf-e6-7xC60cB8SYTNMFJlBsmdKAhjRxIqAtBAQNiAfjLhwxl7nAfzFrptuDAAUBafgWsfy1y-XqnChsp65q4QGfjfQtsBYyyo2FpNRMUgYRj5Xl3E5ZG4N-qPBndWXSU0F0FK3Pr9H41UShy530fJ5wqq8pGlW-TSVe-_xBn_u8QD1P1i7OHnBosOUQuyI7T3TWywgx6SshcE1lVxnflgcBNQw5Zlgs3hoowXKdIc28JRbBFO41WGX9Zis8TqrbCqCl00ux9M-0OnbqPgvFLi5w4TJAKf61TpOAoVCVJKdcSUTZAyX3sEOAWuwKNScy3iVEoCDIxnJIyZCfjHqJ2tMjhBmIeSQcjTWBrPC4I4UtL8wOCZQ9InQrFT1LEmWawrpYxFbY2zv6ev0c5wmowX49Hk6Rzt2i0qWX7xBWrnmwIuDdzn8qrc5Q_wBqlr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+Conference+on+Industrial+Electronics+and+Applications+%28Online%29&rft.atitle=Mining+diagnostic+knowledge+from+spacecraft+data+based+on+Spark+cluster&rft.au=Wang%2C+Haoran&rft.au=Yu%2C+Jinsong&rft.au=Tang%2C+Diyin&rft.au=Han%2C+Danyang&rft.date=2020-11-09&rft.pub=IEEE&rft.eissn=2158-2297&rft.spage=1762&rft.epage=1767&rft_id=info:doi/10.1109%2FICIEA48937.2020.9248423&rft.externalDocID=9248423