Mining diagnostic knowledge from spacecraft data based on Spark cluster
Compared with the data obtained from ground simulation experiments, the spacecraft telemetry data can better reflect the real working state of the spacecraft. How to effectively utilize telemetry data and extract effective information is an important issue. This paper uses diagnostic data from real...
Saved in:
| Published in | IEEE Conference on Industrial Electronics and Applications (Online) pp. 1762 - 1767 |
|---|---|
| Main Authors | , , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
09.11.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2158-2297 |
| DOI | 10.1109/ICIEA48937.2020.9248423 |
Cover
| Abstract | Compared with the data obtained from ground simulation experiments, the spacecraft telemetry data can better reflect the real working state of the spacecraft. How to effectively utilize telemetry data and extract effective information is an important issue. This paper uses diagnostic data from real spacecraft telemetry to mine diagnostic knowledge and build a diagnostic knowledge base. Compared with the traditional fault diagnosis method based on expert knowledge, the diagnostic knowledge mined can enrich the existing expert knowledge base. In this paper, the FP-Growth algorithm is used to mine the association rules of the parameters to obtain the diagnostic knowledge, and a satellite telemetry data diagnosis knowledge base is constructed. Mined diagnostic knowledge includes association rules among parameters, and the relationship between parameters and faults. In addition, due to the large number of telemetry parameters, the amount of data reaching TB level, the Spark distributed computing cluster is used to implement distributed and efficient computing of the algorithm. Finally, building a spacecraft telemetry data mining diagnostic platform with the Django architecture. |
|---|---|
| AbstractList | Compared with the data obtained from ground simulation experiments, the spacecraft telemetry data can better reflect the real working state of the spacecraft. How to effectively utilize telemetry data and extract effective information is an important issue. This paper uses diagnostic data from real spacecraft telemetry to mine diagnostic knowledge and build a diagnostic knowledge base. Compared with the traditional fault diagnosis method based on expert knowledge, the diagnostic knowledge mined can enrich the existing expert knowledge base. In this paper, the FP-Growth algorithm is used to mine the association rules of the parameters to obtain the diagnostic knowledge, and a satellite telemetry data diagnosis knowledge base is constructed. Mined diagnostic knowledge includes association rules among parameters, and the relationship between parameters and faults. In addition, due to the large number of telemetry parameters, the amount of data reaching TB level, the Spark distributed computing cluster is used to implement distributed and efficient computing of the algorithm. Finally, building a spacecraft telemetry data mining diagnostic platform with the Django architecture. |
| Author | Han, Danyang Wang, Haoran Dai, Jing Tian, Limei Tang, Diyin Yu, Jinsong |
| Author_xml | – sequence: 1 givenname: Haoran surname: Wang fullname: Wang, Haoran email: begonia_whr@foxmail.com organization: Beihang University,School of Automation Science and Electrical Engineering,Beijing,China – sequence: 2 givenname: Jinsong surname: Yu fullname: Yu, Jinsong email: yujs@buaa.edu.cn organization: Beihang University,School of Automation Science and Electrical Engineering,Beijing,China – sequence: 3 givenname: Diyin surname: Tang fullname: Tang, Diyin email: tangdiyin@buaa.edu.cn organization: Beihang University,School of Automation Science and Electrical Engineering,Beijing,China – sequence: 4 givenname: Danyang surname: Han fullname: Han, Danyang email: hdy_daniel@buaa.edu.cn organization: Beihang University,School of Automation Science and Electrical Engineering,Beijing,China – sequence: 5 givenname: Limei surname: Tian fullname: Tian, Limei email: Tian_maggie@126.com organization: Beijing Institute of Control Engineering,Science and Technology on Space Intelligent Control Loboratory,Beijing,China – sequence: 6 givenname: Jing surname: Dai fullname: Dai, Jing email: buaadaij@126.com organization: China Academy of Launch Vehicle Technology,Beijing,China |
| BookMark | eNotz7FOwzAUQFGDQKIt_QIG_AMJz89ObI9VVUqkIgZgrhz7JTJtnSoOQvw9A53udqQ7ZzdpSMTYo4BSCLBPzbrZrJSxUpcICKVFZRTKKzYXGo2oRG3VNZuhqEyBaPUdW-b8BQBSaG2kmLHta0wx9TxE16chT9HzQxp-jhR64t04nHg-O09-dN3Eg5scb12mwIfE389uPHB__M4TjffstnPHTMtLF-zzefOxfil2b9tmvdoVEUFOhXJgSNah88Ea7aHqEINRvjJKKxkEUI1UexLYhjo427UtkCKoalcpBSQX7OHfjUS0P4_x5Mbf_eVb_gG8ZE97 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICIEA48937.2020.9248423 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 1728151694 9781728151694 |
| EISSN | 2158-2297 |
| EndPage | 1767 |
| ExternalDocumentID | 9248423 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i203t-4a08e36dfcd987c05f22d84c584743d10e62e6ce12bd6da9fbb0e4e056a5440e3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:33:46 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-4a08e36dfcd987c05f22d84c584743d10e62e6ce12bd6da9fbb0e4e056a5440e3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9248423 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Nov.-9 |
| PublicationDateYYYYMMDD | 2020-11-09 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-Nov.-9 day: 09 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE Conference on Industrial Electronics and Applications (Online) |
| PublicationTitleAbbrev | ICIEA |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003177831 |
| Score | 1.7425642 |
| Snippet | Compared with the data obtained from ground simulation experiments, the spacecraft telemetry data can better reflect the real working state of the spacecraft.... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1762 |
| SubjectTerms | association rules big data mining Classification algorithms Clustering algorithms Data mining distributed computing Knowledge based systems Software algorithms Space vehicles Spark cluster Telemetry Telemetry data |
| Title | Mining diagnostic knowledge from spacecraft data based on Spark cluster |
| URI | https://ieeexplore.ieee.org/document/9248423 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JasMwEBVJTu2lS1K6o0OPtSPLsiQfS0iaFFIKbSC3oGUMJcUJwb706yvZrrvQQy_GGIyNZOuNZt57g9CNBRZronyFkRp30DyQiUgDTahKwAIB5RP680c-XbCHZbLsoNtWCwMAFfkMQn9a1fLtxpQ-VTZ0ewXp4L-LukLyWqvV5lMcDgoZRw2FKyLpcDaaje-8t4pw20BKwubuH21UKhSZHKD55_Nr8sg6LAsdmvdf1oz_fcFDNPjS6-GnFomOUAfyY7T_zWqwj-7nVScIbGtqnftccJtOw15jgt3SYlwMqbICe9oo9vhm8SbHz1u1W2PzVnpPhQFaTMYvo2nQNFEIXimJi4ApIiHmNjM2lcKQJKPUSmZ8eZTFNiLAKXADEdWWW5VmWhNg4OIilTBGID5BvXyTwynCXGgGgmepdnEXJKk02v2-ELklMibKsDPU90Oy2tY-GatmNM7_vnyB9vy0VLq-9BL1il0JVw7gC31dzewHDQOmHg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGYCFR4t444GRpI7jOMmIqkILTYVEK3Wr_LhIqCitqmTh12MnITzEwGJFliJZ58Tf-e6-7xC60cB8SYTNMFJlBsmdKAhjRxIqAtBAQNiAfjLhwxl7nAfzFrptuDAAUBafgWsfy1y-XqnChsp65q4QGfjfQtsBYyyo2FpNRMUgYRj5Xl3E5ZG4N-qPBndWXSU0F0FK3Pr9H41UShy530fJ5wqq8pGlW-TSVe-_xBn_u8QD1P1i7OHnBosOUQuyI7T3TWywgx6SshcE1lVxnflgcBNQw5Zlgs3hoowXKdIc28JRbBFO41WGX9Zis8TqrbCqCl00ux9M-0OnbqPgvFLi5w4TJAKf61TpOAoVCVJKdcSUTZAyX3sEOAWuwKNScy3iVEoCDIxnJIyZCfjHqJ2tMjhBmIeSQcjTWBrPC4I4UtL8wOCZQ9InQrFT1LEmWawrpYxFbY2zv6ev0c5wmowX49Hk6Rzt2i0qWX7xBWrnmwIuDdzn8qrc5Q_wBqlr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+Conference+on+Industrial+Electronics+and+Applications+%28Online%29&rft.atitle=Mining+diagnostic+knowledge+from+spacecraft+data+based+on+Spark+cluster&rft.au=Wang%2C+Haoran&rft.au=Yu%2C+Jinsong&rft.au=Tang%2C+Diyin&rft.au=Han%2C+Danyang&rft.date=2020-11-09&rft.pub=IEEE&rft.eissn=2158-2297&rft.spage=1762&rft.epage=1767&rft_id=info:doi/10.1109%2FICIEA48937.2020.9248423&rft.externalDocID=9248423 |