A Proximal Dual Consensus Method for Linearly Coupled Multi-Agent Non-Convex Optimization

Motivated by large-scale signal processing and machine learning applications, this paper considers the distributed multi-agent optimization problem for a linearly constrained non-convex problem. Each of the agents owns a local cost function and local variable, but are coupled with each other due to...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 5740 - 5744
Main Authors Zhang, Jiawei, Ge, Songyang, Chang, Tsung-Hui, Luo, Zhi-Quan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2020
Subjects
Online AccessGet full text
ISSN2379-190X
DOI10.1109/ICASSP40776.2020.9054236

Cover

Abstract Motivated by large-scale signal processing and machine learning applications, this paper considers the distributed multi-agent optimization problem for a linearly constrained non-convex problem. Each of the agents owns a local cost function and local variable, but are coupled with each other due to the linear constraint. Most of the existing methods are either applicable for convex problems only or are developed under the non-convex setting subject to a specific type of linear constraint. There still lacks a distributed method for solving the linear constrained problem under the general and non-convex setting. In this paper, we propose such a method, called the proximal dual consensus (PDC) method, that combines a proximal technique and the dual consensus method. Theoretical analysis shows that the proposed PDC method can yield a Karush-Kuhn-Tucker solution of the linearly constrained non-convex problem and it has an O(1/ε) iteration complexity, where ε is a solution accuracy. The practical behavior of the proposed method is examined by numerical results.
AbstractList Motivated by large-scale signal processing and machine learning applications, this paper considers the distributed multi-agent optimization problem for a linearly constrained non-convex problem. Each of the agents owns a local cost function and local variable, but are coupled with each other due to the linear constraint. Most of the existing methods are either applicable for convex problems only or are developed under the non-convex setting subject to a specific type of linear constraint. There still lacks a distributed method for solving the linear constrained problem under the general and non-convex setting. In this paper, we propose such a method, called the proximal dual consensus (PDC) method, that combines a proximal technique and the dual consensus method. Theoretical analysis shows that the proposed PDC method can yield a Karush-Kuhn-Tucker solution of the linearly constrained non-convex problem and it has an O(1/ε) iteration complexity, where ε is a solution accuracy. The practical behavior of the proposed method is examined by numerical results.
Author Zhang, Jiawei
Luo, Zhi-Quan
Ge, Songyang
Chang, Tsung-Hui
Author_xml – sequence: 1
  givenname: Jiawei
  surname: Zhang
  fullname: Zhang, Jiawei
  organization: The Chinese University of Hong Kong,School of Science & Engineering,Shenzhen,China,518172
– sequence: 2
  givenname: Songyang
  surname: Ge
  fullname: Ge, Songyang
  organization: The Chinese University of Hong Kong,School of Science & Engineering,Shenzhen,China,518172
– sequence: 3
  givenname: Tsung-Hui
  surname: Chang
  fullname: Chang, Tsung-Hui
  organization: The Chinese University of Hong Kong,School of Science & Engineering,Shenzhen,China,518172
– sequence: 4
  givenname: Zhi-Quan
  surname: Luo
  fullname: Luo, Zhi-Quan
  organization: The Chinese University of Hong Kong,School of Science & Engineering,Shenzhen,China,518172
BookMark eNotUMlKA0EUbEXBJOYLvPQPTHy9TC_HEFeYmEAU9BRmea0tk-4wiyR-vQPmUnUoqqiqMbkIMSAhlMGMMbC3z4v5ZrOWoLWaceAws5BKLtQZmVptWAoWlBIsPScjLrRNmIX3KzJu228AMFqaEfmY03UTD36X1_SuH2ARQ4uh7Vu6xO4rVtTFhmY-YN7Ux0Ht9zVWdNnXnU_mnxg6-hJDMrh-8EBX-87v_G_e-RiuyaXL6xanJ56Qt4f718VTkq0eh-JZ4jmILpG2lJIVRpvUOFcJXiijpCtKZ1DrnBfWgXCCubRU3FRYygrTHEAVXBvAQkzIzX-uR8TtvhmmNMft6QnxB5hDVkI
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP40776.2020.9054236
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781509066315
1509066314
EISSN 2379-190X
EndPage 5744
ExternalDocumentID 9054236
Genre orig-research
GroupedDBID 23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-49c441b87858ffd32b6864fbcf8e77a2b9f03f31f5c628dec4de5a006b2780eb3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:46:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-49c441b87858ffd32b6864fbcf8e77a2b9f03f31f5c628dec4de5a006b2780eb3
PageCount 5
ParticipantIDs ieee_primary_9054236
PublicationCentury 2000
PublicationDate 2020-May
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-May
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.1377182
Snippet Motivated by large-scale signal processing and machine learning applications, this paper considers the distributed multi-agent optimization problem for a...
SourceID ieee
SourceType Publisher
StartPage 5740
SubjectTerms Acoustics
Complexity theory
Conferences
Consensus Optimization
Cost function
Distributed optimization
Machine learning
Non-Convex optimization
Signal processing
Speech processing
Title A Proximal Dual Consensus Method for Linearly Coupled Multi-Agent Non-Convex Optimization
URI https://ieeexplore.ieee.org/document/9054236
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3La8IwGA_qabvsoWNvcthx0ZqkTXIUN3EDneAEd5LmBTKtsrUg--uXtNU92GGXUvqgJeHL933t7wHADdMugnQkkRKaI6p0iGLm4qotDZFE2yhUnu88GEb9CX2chtMKuN1xYYwxOfjMNP1u_i9fr1TmP5W1hKsvMImqoMqYKLhau1WXM8q3SJ1AtB66nfF4RL1YjWsCcdAs7_1hopLnkN4BGGyfXkBHXptZKpvq45cw439f7xA0vth6cLTLQ0egYpJjsP9NaLAOXjr-is18GS_gXeY23qfTm1y8w0FuIQ1d7QpdX2q83rE7m60XRsOcnYs6nn0Fh6sEdT1EfQOf3DKzLPmbDTDp3T93-6g0VUBzHJAUUaFcBSQ54yG3VhMsIx5RK5XlhrEYS2EDYknbhirCXBtFtQljF5sSMx641vsE1JJVYk4BtKHhQhITc8Gpwjp2vVwgrHYVQWzjiJ2Buh-k2brQzZiV43P-9-ELsOcnqgATXoJa-paZK5fwU3mdz_QnTHmskg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFJ0gLtSNDzC-nYVLC3Xa6cwsCUpAKZIACa5I55UQoRBtE-LXO9MWfMSFm6bpI21mcufe095zDgA3RJoIkgF3BJPU8YXETkRMXN1x5XFP6gALy3cOe0F75D-O8bgEbjdcGKVU1nymanY3-5cvFyK1n8rqzNQXyAu2wDY2qILkbK3NukuJT9e9Oi6rd5qNwaDvW7kaAwORWyvu_mGjkmWR1j4I18_Pm0dea2nCa-LjlzTjf1_wAFS_-Hqwv8lEh6Ck4iOw901qsAJeGvaK1XQezeB9ajbWqdPaXLzDMDORhqZ6hQaZKqt4bM6my5mSMOPnOg3Lv4K9Rew0bZP6Cj6bhWZeMDirYNR6GDbbTmGr4EyR6yWOz4SpgTglFFOtpYd4QANfc6GpIiRCnGnX096dxiJAVCrhS4UjE50cEeoa8H0MyvEiVicAaqwo456KKKO-QDIyaM5lWpqaINJRQE5BxQ7SZJkrZ0yK8Tn7-_A12GkPw-6k2-k9nYNdO2l5a-EFKCdvqbo06T_hV9msfwKMTK_j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=A+Proximal+Dual+Consensus+Method+for+Linearly+Coupled+Multi-Agent+Non-Convex+Optimization&rft.au=Zhang%2C+Jiawei&rft.au=Ge%2C+Songyang&rft.au=Chang%2C+Tsung-Hui&rft.au=Luo%2C+Zhi-Quan&rft.date=2020-05-01&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=5740&rft.epage=5744&rft_id=info:doi/10.1109%2FICASSP40776.2020.9054236&rft.externalDocID=9054236