CryoDRGN2: Ab initio neural reconstruction of 3D protein structures from real cryo-EM images

Protein structure determination from cryo-EM data requires reconstructing a 3D volume (or distribution of volumes) from many noisy and randomly oriented 2D projection images. While the standard homogeneous reconstruction task aims to recover a single static structure, recently-proposed neural and no...

Full description

Saved in:
Bibliographic Details
Published inProceedings / IEEE International Conference on Computer Vision pp. 4046 - 4055
Main Authors Zhong, Ellen D., Lerer, Adam, Davis, Joseph H., Berger, Bonnie
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2021
Subjects
Online AccessGet full text
ISSN2380-7504
DOI10.1109/ICCV48922.2021.00403

Cover

Abstract Protein structure determination from cryo-EM data requires reconstructing a 3D volume (or distribution of volumes) from many noisy and randomly oriented 2D projection images. While the standard homogeneous reconstruction task aims to recover a single static structure, recently-proposed neural and non-neural methods can reconstruct distributions of structures, thereby enabling the study of protein complexes that possess intrinsic structural or conformational heterogeneity. These heterogeneous reconstruction methods, however, require fixed image poses, which are typically estimated from an upstream homogeneous reconstruction and are not guaranteed to be accurate under highly heterogeneous conditions.In this work we describe cryoDRGN2, an ab initio reconstruction algorithm, which can jointly estimate image poses and learn a neural model of a distribution of 3D structures on real heterogeneous cryo-EM data. To achieve this, we adapt search algorithms from the traditional cryo-EM literature, and describe the optimizations and design choices required to make such a search procedure computationally tractable in the neural model setting. We show that cryoDRGN2 is robust to the high noise levels of real cryo-EM images, trains faster than earlier neural methods, and achieves state-of-the-art performance on real cryo-EM datasets.
AbstractList Protein structure determination from cryo-EM data requires reconstructing a 3D volume (or distribution of volumes) from many noisy and randomly oriented 2D projection images. While the standard homogeneous reconstruction task aims to recover a single static structure, recently-proposed neural and non-neural methods can reconstruct distributions of structures, thereby enabling the study of protein complexes that possess intrinsic structural or conformational heterogeneity. These heterogeneous reconstruction methods, however, require fixed image poses, which are typically estimated from an upstream homogeneous reconstruction and are not guaranteed to be accurate under highly heterogeneous conditions.In this work we describe cryoDRGN2, an ab initio reconstruction algorithm, which can jointly estimate image poses and learn a neural model of a distribution of 3D structures on real heterogeneous cryo-EM data. To achieve this, we adapt search algorithms from the traditional cryo-EM literature, and describe the optimizations and design choices required to make such a search procedure computationally tractable in the neural model setting. We show that cryoDRGN2 is robust to the high noise levels of real cryo-EM images, trains faster than earlier neural methods, and achieves state-of-the-art performance on real cryo-EM datasets.
Author Zhong, Ellen D.
Lerer, Adam
Berger, Bonnie
Davis, Joseph H.
Author_xml – sequence: 1
  givenname: Ellen D.
  surname: Zhong
  fullname: Zhong, Ellen D.
  email: zhonge@mit.edu
  organization: MIT
– sequence: 2
  givenname: Adam
  surname: Lerer
  fullname: Lerer, Adam
  email: alerer@fb.com
  organization: Facebook AI
– sequence: 3
  givenname: Joseph H.
  surname: Davis
  fullname: Davis, Joseph H.
  email: jhdavis@mit.edu
  organization: MIT
– sequence: 4
  givenname: Bonnie
  surname: Berger
  fullname: Berger, Bonnie
  email: bab@mit.edu
  organization: MIT
BookMark eNotj8tKAzEYhaMo2NY-gS7yAlP_3CaJuzKttVAVRF0JJU3_SKRNSma66Ns7UFcHPs6FMyRXKSck5J7BhDGwD8um-ZLGcj7hwNkEQIK4IGOrDatrJblhXF2SARcGKq1A3pBh2_4CCMtNPSDfTTnl2fvilT_S6YbGFLuYacJjcTta0OfUduXoe5hoDlTM6KHkDmOiZ34s2NJQ8r439wnft1XzFxr37gfbW3Id3K7F8b-OyOfT_KN5rlZvi2UzXVWRg-gqKUPQilu-ZVLjltXA0LkAtRNe9Resxg0P3inlt0rLgIEj8x6N0dpq7cSI3J17IyKuD6VfL6e11QwMSPEHCBVVrg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICCV48922.2021.00403
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781665428125
1665428120
EISSN 2380-7504
EndPage 4055
ExternalDocumentID 9710804
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-44ff75292d147ed1601eaaf06a3c554297eb2fca55cd574fef2e1cce8877977a3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:25:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-44ff75292d147ed1601eaaf06a3c554297eb2fca55cd574fef2e1cce8877977a3
PageCount 10
ParticipantIDs ieee_primary_9710804
PublicationCentury 2000
PublicationDate 2021-Oct.
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.
PublicationDecade 2020
PublicationTitle Proceedings / IEEE International Conference on Computer Vision
PublicationTitleAbbrev ICCV
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
Score 2.3652797
Snippet Protein structure determination from cryo-EM data requires reconstructing a 3D volume (or distribution of volumes) from many noisy and randomly oriented 2D...
SourceID ieee
SourceType Publisher
StartPage 4046
SubjectTerms 3D from multiview and other sensors
Adaptation models
and cell microscopy
biological
Computational modeling
Computer vision
Efficient training and inference methods
Medical
Neural generative models
Proteins
Reconstruction algorithms
Representation learning
Stereo
Task analysis
Three-dimensional displays
Vision applications and systems
Title CryoDRGN2: Ab initio neural reconstruction of 3D protein structures from real cryo-EM images
URI https://ieeexplore.ieee.org/document/9710804
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG62nTxN3Yy_04NHYVAKLd4M25wmW4xxZgeTpfRHQpxg3HbQv95XYDMaD95IAwX66Hv96Pe9h9BFmjKwNAGk6nHqUOVJJxaSWswD8UATw0TJ8p1Eoym9m4WzBrrcamG01iX5TLv2sNzLV4Vc219lvZhZRhxtoibjUaXV2nhdCPM8qqVxvhf3bpPkifKYWK0V8V37rQY_CqiU8WPYRuPNnSvayIu7XqWu_PyVlPG_j7aLut9KPXy_jUF7qKHzfdSul5a4nrjLDnpO3j-K_sPNhFzh6xRnljJUYJvMUixwCYq3iWRxYXDQx2UChyzHVfsaUDm2UhQ4Ga6Q0JszGOPsFdzRsoumw8FjMnLqwgpORrxg5VBqDAtJTJRPmVY-gDIthPEiEcjQFrBigLeNFGEoVcio0YZoX0oNDonBelEEB6iVF7k-RFgE3KTaZzwwjMZScaXt5h5VEjwBD80R6tjBmr9VuTPm9Tgd_918gnasuSqy3ClqwRvqMwj6q_S8tPYXYgusag
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOgJFYy_7cGjG1vX0s2bGSAoEGPAcDAhXdcmi7oZgYP-9bbbwGg8eFua_ezb3nvf-n3vAVxEEdOWxhqpOj6xSOwIK-CCGMyj44HEivGc5Ttq9SbkdkqnFbhca2GklDn5TNpmM1_LjzOxNL_KmgEzjDiyAZuUEEILtdbK7-pA77dKcZzrBM1-GD4SP8BGbYVd27yt3o8WKnkE6dZguLp2QRx5tpeLyBafv8oy_vfmdqDxrdVD9-sotAsVme5BrUwuUfnpzuvwFL5_ZO2HmxG-QtcRSgxpKEOmnCV_QTksXpeSRZlCXhvlJRySFBXjS43LkRGj6J31EUKfzeoMUfKqHdK8AZNuZxz2rLK1gpVgx1tYhCjFKA5w7BImY1fDMsm5clrcE9S0sGIacSvBKRUxZURJhaUrhNQuiemMkXv7UE2zVB4A4p6vIuky31OMBCL2Y2mW90gstC_wqTqEupms2VtRPWNWztPR38PnsNUbDwezQX90dwzbxnQFde4Eqvpp5alOARbRWW75L5dFr7c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=CryoDRGN2%3A+Ab+initio+neural+reconstruction+of+3D+protein+structures+from+real+cryo-EM+images&rft.au=Zhong%2C+Ellen+D.&rft.au=Lerer%2C+Adam&rft.au=Davis%2C+Joseph+H.&rft.au=Berger%2C+Bonnie&rft.date=2021-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=4046&rft.epage=4055&rft_id=info:doi/10.1109%2FICCV48922.2021.00403&rft.externalDocID=9710804