CryoDRGN2: Ab initio neural reconstruction of 3D protein structures from real cryo-EM images
Protein structure determination from cryo-EM data requires reconstructing a 3D volume (or distribution of volumes) from many noisy and randomly oriented 2D projection images. While the standard homogeneous reconstruction task aims to recover a single static structure, recently-proposed neural and no...
Saved in:
| Published in | Proceedings / IEEE International Conference on Computer Vision pp. 4046 - 4055 |
|---|---|
| Main Authors | , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.10.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2380-7504 |
| DOI | 10.1109/ICCV48922.2021.00403 |
Cover
| Abstract | Protein structure determination from cryo-EM data requires reconstructing a 3D volume (or distribution of volumes) from many noisy and randomly oriented 2D projection images. While the standard homogeneous reconstruction task aims to recover a single static structure, recently-proposed neural and non-neural methods can reconstruct distributions of structures, thereby enabling the study of protein complexes that possess intrinsic structural or conformational heterogeneity. These heterogeneous reconstruction methods, however, require fixed image poses, which are typically estimated from an upstream homogeneous reconstruction and are not guaranteed to be accurate under highly heterogeneous conditions.In this work we describe cryoDRGN2, an ab initio reconstruction algorithm, which can jointly estimate image poses and learn a neural model of a distribution of 3D structures on real heterogeneous cryo-EM data. To achieve this, we adapt search algorithms from the traditional cryo-EM literature, and describe the optimizations and design choices required to make such a search procedure computationally tractable in the neural model setting. We show that cryoDRGN2 is robust to the high noise levels of real cryo-EM images, trains faster than earlier neural methods, and achieves state-of-the-art performance on real cryo-EM datasets. |
|---|---|
| AbstractList | Protein structure determination from cryo-EM data requires reconstructing a 3D volume (or distribution of volumes) from many noisy and randomly oriented 2D projection images. While the standard homogeneous reconstruction task aims to recover a single static structure, recently-proposed neural and non-neural methods can reconstruct distributions of structures, thereby enabling the study of protein complexes that possess intrinsic structural or conformational heterogeneity. These heterogeneous reconstruction methods, however, require fixed image poses, which are typically estimated from an upstream homogeneous reconstruction and are not guaranteed to be accurate under highly heterogeneous conditions.In this work we describe cryoDRGN2, an ab initio reconstruction algorithm, which can jointly estimate image poses and learn a neural model of a distribution of 3D structures on real heterogeneous cryo-EM data. To achieve this, we adapt search algorithms from the traditional cryo-EM literature, and describe the optimizations and design choices required to make such a search procedure computationally tractable in the neural model setting. We show that cryoDRGN2 is robust to the high noise levels of real cryo-EM images, trains faster than earlier neural methods, and achieves state-of-the-art performance on real cryo-EM datasets. |
| Author | Zhong, Ellen D. Lerer, Adam Berger, Bonnie Davis, Joseph H. |
| Author_xml | – sequence: 1 givenname: Ellen D. surname: Zhong fullname: Zhong, Ellen D. email: zhonge@mit.edu organization: MIT – sequence: 2 givenname: Adam surname: Lerer fullname: Lerer, Adam email: alerer@fb.com organization: Facebook AI – sequence: 3 givenname: Joseph H. surname: Davis fullname: Davis, Joseph H. email: jhdavis@mit.edu organization: MIT – sequence: 4 givenname: Bonnie surname: Berger fullname: Berger, Bonnie email: bab@mit.edu organization: MIT |
| BookMark | eNotj8tKAzEYhaMo2NY-gS7yAlP_3CaJuzKttVAVRF0JJU3_SKRNSma66Ns7UFcHPs6FMyRXKSck5J7BhDGwD8um-ZLGcj7hwNkEQIK4IGOrDatrJblhXF2SARcGKq1A3pBh2_4CCMtNPSDfTTnl2fvilT_S6YbGFLuYacJjcTta0OfUduXoe5hoDlTM6KHkDmOiZ34s2NJQ8r439wnft1XzFxr37gfbW3Id3K7F8b-OyOfT_KN5rlZvi2UzXVWRg-gqKUPQilu-ZVLjltXA0LkAtRNe9Resxg0P3inlt0rLgIEj8x6N0dpq7cSI3J17IyKuD6VfL6e11QwMSPEHCBVVrg |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICCV48922.2021.00403 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9781665428125 1665428120 |
| EISSN | 2380-7504 |
| EndPage | 4055 |
| ExternalDocumentID | 9710804 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i203t-44ff75292d147ed1601eaaf06a3c554297eb2fca55cd574fef2e1cce8877977a3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:25:37 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-44ff75292d147ed1601eaaf06a3c554297eb2fca55cd574fef2e1cce8877977a3 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_9710804 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Oct. |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-Oct. |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings / IEEE International Conference on Computer Vision |
| PublicationTitleAbbrev | ICCV |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0039286 |
| Score | 2.3652797 |
| Snippet | Protein structure determination from cryo-EM data requires reconstructing a 3D volume (or distribution of volumes) from many noisy and randomly oriented 2D... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 4046 |
| SubjectTerms | 3D from multiview and other sensors Adaptation models and cell microscopy biological Computational modeling Computer vision Efficient training and inference methods Medical Neural generative models Proteins Reconstruction algorithms Representation learning Stereo Task analysis Three-dimensional displays Vision applications and systems |
| Title | CryoDRGN2: Ab initio neural reconstruction of 3D protein structures from real cryo-EM images |
| URI | https://ieeexplore.ieee.org/document/9710804 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG62nTxN3Yy_04NHYVAKLd4M25wmW4xxZgeTpfRHQpxg3HbQv95XYDMaD95IAwX66Hv96Pe9h9BFmjKwNAGk6nHqUOVJJxaSWswD8UATw0TJ8p1Eoym9m4WzBrrcamG01iX5TLv2sNzLV4Vc219lvZhZRhxtoibjUaXV2nhdCPM8qqVxvhf3bpPkifKYWK0V8V37rQY_CqiU8WPYRuPNnSvayIu7XqWu_PyVlPG_j7aLut9KPXy_jUF7qKHzfdSul5a4nrjLDnpO3j-K_sPNhFzh6xRnljJUYJvMUixwCYq3iWRxYXDQx2UChyzHVfsaUDm2UhQ4Ga6Q0JszGOPsFdzRsoumw8FjMnLqwgpORrxg5VBqDAtJTJRPmVY-gDIthPEiEcjQFrBigLeNFGEoVcio0YZoX0oNDonBelEEB6iVF7k-RFgE3KTaZzwwjMZScaXt5h5VEjwBD80R6tjBmr9VuTPm9Tgd_918gnasuSqy3ClqwRvqMwj6q_S8tPYXYgusag |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOgJFYy_7cGjG1vX0s2bGSAoEGPAcDAhXdcmi7oZgYP-9bbbwGg8eFua_ezb3nvf-n3vAVxEEdOWxhqpOj6xSOwIK-CCGMyj44HEivGc5Ttq9SbkdkqnFbhca2GklDn5TNpmM1_LjzOxNL_KmgEzjDiyAZuUEEILtdbK7-pA77dKcZzrBM1-GD4SP8BGbYVd27yt3o8WKnkE6dZguLp2QRx5tpeLyBafv8oy_vfmdqDxrdVD9-sotAsVme5BrUwuUfnpzuvwFL5_ZO2HmxG-QtcRSgxpKEOmnCV_QTksXpeSRZlCXhvlJRySFBXjS43LkRGj6J31EUKfzeoMUfKqHdK8AZNuZxz2rLK1gpVgx1tYhCjFKA5w7BImY1fDMsm5clrcE9S0sGIacSvBKRUxZURJhaUrhNQuiemMkXv7UE2zVB4A4p6vIuky31OMBCL2Y2mW90gstC_wqTqEupms2VtRPWNWztPR38PnsNUbDwezQX90dwzbxnQFde4Eqvpp5alOARbRWW75L5dFr7c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=CryoDRGN2%3A+Ab+initio+neural+reconstruction+of+3D+protein+structures+from+real+cryo-EM+images&rft.au=Zhong%2C+Ellen+D.&rft.au=Lerer%2C+Adam&rft.au=Davis%2C+Joseph+H.&rft.au=Berger%2C+Bonnie&rft.date=2021-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=4046&rft.epage=4055&rft_id=info:doi/10.1109%2FICCV48922.2021.00403&rft.externalDocID=9710804 |