A simple method for sampling random Clifford operators

We describe a simple algorithm for sampling n-qubit Clifford operators uniformly at random. The algorithm outputs the Clifford operators in the form of quantum circuits with at most 5n + 2n 2 elementary gates and a maximum depth of {\mathcal{O}}\left({n\,{\text{log}}\,n}\right) on fully connected to...

Full description

Saved in:
Bibliographic Details
Published in2021 IEEE International Conference on Quantum Computing and Engineering (QCE) pp. 54 - 59
Main Author Van Den Berg, Ewout
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2021
Subjects
Online AccessGet full text
DOI10.1109/QCE52317.2021.00021

Cover

Abstract We describe a simple algorithm for sampling n-qubit Clifford operators uniformly at random. The algorithm outputs the Clifford operators in the form of quantum circuits with at most 5n + 2n 2 elementary gates and a maximum depth of {\mathcal{O}}\left({n\,{\text{log}}\,n}\right) on fully connected topologies. The circuit can be output in a streaming fashion as the algorithm proceeds, and different parts of the circuit can be generated in parallel. The algorithm has an {\mathcal{O}}\left({{n^2}}\right) time complexity, which matches the current state of the art. The main advantage of the proposed algorithm, however, lies in its simplicity and elementary derivation.
AbstractList We describe a simple algorithm for sampling n-qubit Clifford operators uniformly at random. The algorithm outputs the Clifford operators in the form of quantum circuits with at most 5n + 2n 2 elementary gates and a maximum depth of {\mathcal{O}}\left({n\,{\text{log}}\,n}\right) on fully connected topologies. The circuit can be output in a streaming fashion as the algorithm proceeds, and different parts of the circuit can be generated in parallel. The algorithm has an {\mathcal{O}}\left({{n^2}}\right) time complexity, which matches the current state of the art. The main advantage of the proposed algorithm, however, lies in its simplicity and elementary derivation.
Author Van Den Berg, Ewout
Author_xml – sequence: 1
  givenname: Ewout
  surname: Van Den Berg
  fullname: Van Den Berg, Ewout
  email: evandenberg@us.ibm.com
  organization: IBM T.J. Watson Research Center,IBM Quantum,Yorktown Heights,NY,USA
BookMark eNotjMtKxDAUQCPoQsf5gtnkB1pzc_NcDmV8wMAg6HpImxsNtE1pu_HvLejmHDiL88BuxzISYwcQNYDwT-_NSUsEW0shoRZi4w3be-vAGK3AeLD3zBz5koepJz7Q-l0iT2XmS9hKHr_4HMZYBt70OW098jLRHNYyL4_sLoV-of2_d-zz-fTRvFbny8tbczxXWQpcK6WUd127MUbdWS0SOtdGbKOQJjqQyStInbdE4GRo0aqElDodog4aI-7Y4e-bieg6zXkI88_VG6ERBf4C7pxDfg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/QCE52317.2021.00021
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665416917
1665416912
EndPage 59
ExternalDocumentID 9605330
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-44498cb449dd5c750f388bd3bd026d812f941fc97ee182ab374f3efc5ad5a53d3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:56 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-44498cb449dd5c750f388bd3bd026d812f941fc97ee182ab374f3efc5ad5a53d3
PageCount 6
ParticipantIDs ieee_primary_9605330
PublicationCentury 2000
PublicationDate 2021-Oct.
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.
PublicationDecade 2020
PublicationTitle 2021 IEEE International Conference on Quantum Computing and Engineering (QCE)
PublicationTitleAbbrev QCE
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.0418541
Snippet We describe a simple algorithm for sampling n-qubit Clifford operators uniformly at random. The algorithm outputs the Clifford operators in the form of quantum...
SourceID ieee
SourceType Publisher
StartPage 54
SubjectTerms Clifford circuits
Conferences
Logic gates
Quantum circuit
random sampling
tableau representation
Time complexity
Topology
Title A simple method for sampling random Clifford operators
URI https://ieeexplore.ieee.org/document/9605330
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB3anjyptOI3OXg0bbfJ7iZHKS1FqChY6K1skokUdbfY7aW_3slurSIevISQS74gLy958wbgBo1GaTPkyqaCS2UEN9ZoTuegx2Dx5HWId54-JJOZvJ_H8wbc7mNhELESn2E3VKu_fFfYTXgq69FtO4ghm9BMVVLHau2MhKK-7j0NR8SqopRI3yAKvoTB__NHypQKMcaHMP3qqxaKvHY3pena7S8bxv8O5gg637F57HGPOsfQwLwNyR1bL4PPL6szQjO6irJ1FtTi-QsjOHLFOxu-LX2QsrNihdXn-roDs_HoeTjhu4wIfDnoi5JLKbWyhkrnYktg74VSxgnjiEo5wmqvZeStThGJN2RGpNIL9DbOXJzFwokTaOVFjqfAZHDRSRSRSONlnPa11UlkDG2N95kbJGfQDnNerGrTi8Vuuud_N1_AQVj1WuV2Ca3yY4NXhNalua626RNl_5bd
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0gHvSkBozf9uDRBZa2u9ujIRJUIJpAwo1s26khKktkufjrne4iGuPBS7PpZXcySd-87Zs3AFeoFQqTYpCYmAci0TzQRquAzkGH3uLJKd_vPBhGvbG4n8hJBa43vTCIWIjPsOEfi7t8m5mV_1XWpGrbiyG3YFsKIWTZrbW2EgpbqvnUuSVeFcZE-9qhdyb0DqA_hqYUmNHdg8HX20qpyEtjleuG-fhlxPjfz9mH-nd3Hnvc4M4BVHBeg-iGLWfe6ZeVM6EZFaNsmXq9-PyZESDZ7I11XmfOi9lZtsDien1Zh3H3dtTpBeuZCMGs3eJ5QHGrxGharZWG4N7xJNGWa0tkyhJaOyVCZ1SMSMwh1TwWjqMzMrUyldzyQ6jOszkeARPeRydKiEZqJ2TcUkZFodaUHOdS246OoeZjni5K24vpOtyTv7cvYac3GvSn_bvhwyns-gyUmrczqObvKzwn7M71RZGyT3-Hmio
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+International+Conference+on+Quantum+Computing+and+Engineering+%28QCE%29&rft.atitle=A+simple+method+for+sampling+random+Clifford+operators&rft.au=Van+Den+Berg%2C+Ewout&rft.date=2021-10-01&rft.pub=IEEE&rft.spage=54&rft.epage=59&rft_id=info:doi/10.1109%2FQCE52317.2021.00021&rft.externalDocID=9605330