HiddenPose: Non-Line-of-Sight 3D Human Pose Estimation

Nearly all existing human pose estimation techniques address the problem under the line-of-sight (LOS) setting. Many real-life applications such as rescue missions and autonomous driving, in contrast, require estimating the pose of hidden subjects. In this paper, we present a non-line-of-sight (NLOS...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Conference on Computational Photography pp. 1 - 12
Main Authors Liu, Ping, Yu, Yanhua, Pan, Zhengqing, Peng, Xingyue, Li, Ruiqian, Wang, Yuehan, Yu, Jingyi, Li, Shiying
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2022
Subjects
Online AccessGet full text
ISSN2472-7636
DOI10.1109/ICCP54855.2022.9887660

Cover

Abstract Nearly all existing human pose estimation techniques address the problem under the line-of-sight (LOS) setting. Many real-life applications such as rescue missions and autonomous driving, in contrast, require estimating the pose of hidden subjects. In this paper, we present a non-line-of-sight (NLOS) pose estimator, which produces a skeletal representation of hidden human poses. A brute-force approach would first conduct albedo reconstruction of a hidden subject and then apply LOS pose estimation. We show that such an implementation does not effectively exploit features unique to NLOS and subsequently yields artifacts such as missing joints. We instead first generate a comprehensive NLOS human pose dataset of 19 subjects under 9 motions. We then present a spatially aware deep learning technique based on convolutional neural networks that explicitly employ NLOS features. Comprehensive experiments on both synthetic and real data show that our new estimator is both effective and robust and can be seamlessly integrated into learning-based NLOS scene reconstruction. Our HiddenPose transient dataset contains synthetic transients with ground-truths of the volumes and the joints and real-world transients captured from our NLOS imaging system. Extensive assessments demonstrate that the HiddenPose transient dataset is valuable for effective NLOS research. We will make our data and code publicly available.
AbstractList Nearly all existing human pose estimation techniques address the problem under the line-of-sight (LOS) setting. Many real-life applications such as rescue missions and autonomous driving, in contrast, require estimating the pose of hidden subjects. In this paper, we present a non-line-of-sight (NLOS) pose estimator, which produces a skeletal representation of hidden human poses. A brute-force approach would first conduct albedo reconstruction of a hidden subject and then apply LOS pose estimation. We show that such an implementation does not effectively exploit features unique to NLOS and subsequently yields artifacts such as missing joints. We instead first generate a comprehensive NLOS human pose dataset of 19 subjects under 9 motions. We then present a spatially aware deep learning technique based on convolutional neural networks that explicitly employ NLOS features. Comprehensive experiments on both synthetic and real data show that our new estimator is both effective and robust and can be seamlessly integrated into learning-based NLOS scene reconstruction. Our HiddenPose transient dataset contains synthetic transients with ground-truths of the volumes and the joints and real-world transients captured from our NLOS imaging system. Extensive assessments demonstrate that the HiddenPose transient dataset is valuable for effective NLOS research. We will make our data and code publicly available.
Author Yu, Jingyi
Li, Ruiqian
Li, Shiying
Pan, Zhengqing
Wang, Yuehan
Liu, Ping
Yu, Yanhua
Peng, Xingyue
Author_xml – sequence: 1
  givenname: Ping
  surname: Liu
  fullname: Liu, Ping
  email: liuping@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University,Shanghai,China,201210
– sequence: 2
  givenname: Yanhua
  surname: Yu
  fullname: Yu, Yanhua
  email: yuyh@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University,Shanghai,China,201210
– sequence: 3
  givenname: Zhengqing
  surname: Pan
  fullname: Pan, Zhengqing
  email: panzhq@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University,Shanghai,China,201210
– sequence: 4
  givenname: Xingyue
  surname: Peng
  fullname: Peng, Xingyue
  email: pengxy@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University,Shanghai,China,201210
– sequence: 5
  givenname: Ruiqian
  surname: Li
  fullname: Li, Ruiqian
  email: lirq1@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University,Shanghai,China,201210
– sequence: 6
  givenname: Yuehan
  surname: Wang
  fullname: Wang, Yuehan
  email: wangyh8@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University,Shanghai,China,201210
– sequence: 7
  givenname: Jingyi
  surname: Yu
  fullname: Yu, Jingyi
  email: yujingyi@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University,Shanghai,China,201210
– sequence: 8
  givenname: Shiying
  surname: Li
  fullname: Li, Shiying
  email: lishy1@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University,Shanghai,China,201210
BookMark eNotj8FKAzEURaMo2NZ-gSDzAxnz8ibJizsZq1MYtGD3JZ0kGrEZ6YwL_74Vuzqbw7ncKbvIfQ6M3YIoAYS9W9b1SlWkVCmFlKUlMlqLMzYFrVWlSAGds4msjORGo75i82H4FEKABmUlTphukvchr_oh3BcvfeZtyoH3kb-l94-xwMei-dm5XPwJxWIY086Nqc_X7DK6ryHMT5yx9dNiXTe8fX1e1g8tT1LgyCuU0SpPQiMCbbFzirxyNlaEnSfTBbLKHAUNUpguatttBUTwDiRKxBm7-c-mEMLme39c3_9uTi_xABBORkE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCP54855.2022.9887660
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1665458518
9781665458511
EISSN 2472-7636
EndPage 12
ExternalDocumentID 9887660
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61977047,61976138
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IF
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i203t-432f95d8063318b3ca58d5a9f483cd87ce89575d861207cf69cb01f1da123233
IEDL.DBID RIE
IngestDate Wed Aug 27 02:14:38 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-432f95d8063318b3ca58d5a9f483cd87ce89575d861207cf69cb01f1da123233
PageCount 12
ParticipantIDs ieee_primary_9887660
PublicationCentury 2000
PublicationDate 2022-Aug.-1
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-Aug.-1
  day: 01
PublicationDecade 2020
PublicationTitle IEEE International Conference on Computational Photography
PublicationTitleAbbrev ICCP
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001615923
Score 1.8613056
Snippet Nearly all existing human pose estimation techniques address the problem under the line-of-sight (LOS) setting. Many real-life applications such as rescue...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Codes
Computational Photography
Convolutional neural networks
Deep learning
Line-of-sight propagation
Photography
Pose estimation
Three-dimensional displays
Title HiddenPose: Non-Line-of-Sight 3D Human Pose Estimation
URI https://ieeexplore.ieee.org/document/9887660
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ09TN_E3OXg0XZukaeJ1bkxhY-CE3UaTvoIIrbju4l_vS1s3FA_eSmhpSPj4vvfyvhdCbiU4nkbSMmNixyRwhBQ3KORAopxHgrS1KWw2V9MX-bSKVx1yt_PCAEBdfAaBf6zP8rPSbX2qbGgQEUphgH6QaNV4tfb5FKRmFCutCTgKzfBxNFrEvvcJRoGcB-3HP25RqUlk0iOz7983tSNvwbaygfv81Znxv_M7IoO9XY8udkR0TDpQnJBeqy9pi95Nn6ip7xdSLMoN3NN5WTAMRIGVOXv2EToVD7RO6VP_Ah0j9htb44AsJ-PlaMraexPYKw9FxaTguYkzjeoDEWuFS2OdxanJpRYu04kDbVClZRrVTZi4XBlnwyiPstTrKyFOSbcoCzgjFFwmRMoVJP4oGHJrrQIeWiFMJByPzknfr8L6vemMsW4X4OLv4Uty6HeiKZ-7It3qYwvXSOmVvan38gtgQZ21
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5jHvQ0dRN_m4NHs7X50TVe50an2xg4YbfRpK8gQiuuu_jX-9LWDcWDt1BSCAkf3_de3vdCyK0Ey2NfGqa1skwCR0hxjUIOJMp5JEhTmsKmsyB6kY9LtWyQu60XBgDK4jPoumF5l5_kduNSZT2NiAgCDND3lJRSVW6tXUYFyRnlSm0D9j3dGw8Gc-W6n2AcyHm3_v3HOyoljYxaZPq9gKp65K27KUzXfv7qzfjfFR6Szs6wR-dbKjoiDciOSatWmLTG77pNgsh1DMnm-Rru6SzPGIaiwPKUPbsYnYoHWib1qZtAh4j-ytjYIYvRcDGIWP1yAnvlniiYFDzVKglRfyBmjbCxChMV61SGwiZh30KoUaclIeobr2_TQFvj-amfxE5hCXFCmlmewSmhYBMhYh5A310GQ2qMCYB7RgjtC8v9M9J2u7B6r3pjrOoNOP_78w3ZjxbTyWoynj1dkAN3KlUx3SVpFh8buEKCL8x1ea5f12KhAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Computational+Photography&rft.atitle=HiddenPose%3A+Non-Line-of-Sight+3D+Human+Pose+Estimation&rft.au=Liu%2C+Ping&rft.au=Yu%2C+Yanhua&rft.au=Pan%2C+Zhengqing&rft.au=Peng%2C+Xingyue&rft.date=2022-08-01&rft.pub=IEEE&rft.eissn=2472-7636&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FICCP54855.2022.9887660&rft.externalDocID=9887660