TUNERCAR: A Superoptimization Toolchain for Autonomous Racing
TUNERCAR is a toolchain that jointly optimizes racing strategy, planning methods, control algorithms, and vehicle parameters for an autonomous racecar. In this paper, we detail the target hardware, software, simulators, and systems infrastructure for this toolchain. Our methodology employs a paralle...
Saved in:
| Published in | Proceedings - IEEE International Conference on Robotics and Automation pp. 5356 - 5362 |
|---|---|
| Main Authors | , , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.05.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2577-087X |
| DOI | 10.1109/ICRA40945.2020.9197080 |
Cover
| Abstract | TUNERCAR is a toolchain that jointly optimizes racing strategy, planning methods, control algorithms, and vehicle parameters for an autonomous racecar. In this paper, we detail the target hardware, software, simulators, and systems infrastructure for this toolchain. Our methodology employs a parallel implementation of CMA-ES which enables simulations to proceed 6 times faster than real-world rollouts. We show our approach can reduce the lap times in autonomous racing, given a fixed computational budget. For all tested tracks, our method provides the lowest lap time, and relative improvements in lap time between 7-21%. We demonstrate improvements over a naive random search method with equivalent computational budget of over 15 seconds/lap, and improvements over expert solutions of over 2 seconds/lap. We further compare the performance of our method against hand-tuned solutions submitted by over 30 international teams, comprised of graduate students working in the field of autonomous vehicles. Finally, we discuss the effectiveness of utilizing an online planning mechanism to reduce the reality gap between our simulation and actual tests. |
|---|---|
| AbstractList | TUNERCAR is a toolchain that jointly optimizes racing strategy, planning methods, control algorithms, and vehicle parameters for an autonomous racecar. In this paper, we detail the target hardware, software, simulators, and systems infrastructure for this toolchain. Our methodology employs a parallel implementation of CMA-ES which enables simulations to proceed 6 times faster than real-world rollouts. We show our approach can reduce the lap times in autonomous racing, given a fixed computational budget. For all tested tracks, our method provides the lowest lap time, and relative improvements in lap time between 7-21%. We demonstrate improvements over a naive random search method with equivalent computational budget of over 15 seconds/lap, and improvements over expert solutions of over 2 seconds/lap. We further compare the performance of our method against hand-tuned solutions submitted by over 30 international teams, comprised of graduate students working in the field of autonomous vehicles. Finally, we discuss the effectiveness of utilizing an online planning mechanism to reduce the reality gap between our simulation and actual tests. |
| Author | Jain, Achin O'Kelly, Matthew Auckley, Joseph Zheng, Hongrui Luong, Kim Mangharam, Rahul |
| Author_xml | – sequence: 1 givenname: Matthew surname: O'Kelly fullname: O'Kelly, Matthew organization: University of Pennsylvania,Department of Electrical and Systems Engineering,Philadelphia,USA – sequence: 2 givenname: Hongrui surname: Zheng fullname: Zheng, Hongrui organization: University of Pennsylvania,Department of Electrical and Systems Engineering,Philadelphia,USA – sequence: 3 givenname: Achin surname: Jain fullname: Jain, Achin organization: University of Pennsylvania,Department of Electrical and Systems Engineering,Philadelphia,USA – sequence: 4 givenname: Joseph surname: Auckley fullname: Auckley, Joseph organization: University of Pennsylvania,Department of Electrical and Systems Engineering,Philadelphia,USA – sequence: 5 givenname: Kim surname: Luong fullname: Luong, Kim organization: University of Pennsylvania,Department of Electrical and Systems Engineering,Philadelphia,USA – sequence: 6 givenname: Rahul surname: Mangharam fullname: Mangharam, Rahul organization: University of Pennsylvania,Department of Electrical and Systems Engineering,Philadelphia,USA |
| BookMark | eNotj8tKw0AUQEdRsKl-gSD5gcQ7j8xDcBFC1UJRiBHclenNREeamZLHQr9ewa7OWR04CTkLMThCbijklIK5XVd1KcCIImfAIDfUKNBwQhKqmKaKm0KdkgUrlMpAq_cLkozjFwBwLuWC3Ddvz6u6Kuu7tExf54Mb4mHyvf-xk48hbWLc46f1Ie3ikJbzFEPs4zymtUUfPi7JeWf3o7s6ckmah1VTPWWbl8d1VW4yz4BPmWBaI0q0dAdGolTOdK1DbQzYTiBHIdC0SHd_zlsrDFCl0DpJKVpr-JJc_2e9c257GHxvh-_t8ZT_AqCtSok |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICRA40945.2020.9197080 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics |
| EISBN | 1728173957 9781728173955 |
| EISSN | 2577-087X |
| EndPage | 5362 |
| ExternalDocumentID | 9197080 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i203t-4288cc6ca1b096c67e9fdec8990af4c3c44c9dc1b4c33da490177cae611caa93 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:32:30 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-4288cc6ca1b096c67e9fdec8990af4c3c44c9dc1b4c33da490177cae611caa93 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_9197080 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-May |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-May |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings - IEEE International Conference on Robotics and Automation |
| PublicationTitleAbbrev | ICRA |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003366 |
| Score | 1.8814381 |
| Snippet | TUNERCAR is a toolchain that jointly optimizes racing strategy, planning methods, control algorithms, and vehicle parameters for an autonomous racecar. In this... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 5356 |
| SubjectTerms | Hardware Optimization Planning Robots Sociology Statistics Vehicle dynamics |
| Title | TUNERCAR: A Superoptimization Toolchain for Autonomous Racing |
| URI | https://ieeexplore.ieee.org/document/9197080 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwHA3bTvOibhO_ycGj7ZamTRbBQxkbU9iQ2sFuI_k1w6G2ou3Fv96krfMDD95CoG1IIO-99PdeELqgmoGBHc_xWACOLyR1hODKUYTrQPhgOL0975jN2XTh3y6DZQNdbr0wWuuy-Ey7tln-y08yKOxRWV8QwQ3DaaImH7LKq7XddSllrHYAk4Ho34yi0EqXwEhAb-DWT_64QqVEkMkumn1-uyoceXSLXLnw_iuW8b-D20O9L68evtui0D5q6LSDdr7FDHZQ2zLKKpC5i67jxXwcjcLoCof4vrA54WbXeK7tmDjOsid4kJsUGzaLwyK3poeseMORBPOyHoon43g0deo7FJyNN6C5Y9TFEICBJMqIFWBci3WiwaisgVz7QMH3QSRAlGnTRPqGHnAOUjNCQEpBD1ArzVJ9iHBAPaEMetFhQv1Ac0kCw04UpQGhklPvCHXtpKxeqpSMVT0fx393n6C2XZiqdPAUtfLXQp8ZeM_VebmuHw1nowg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGP2CeBAvKmD87Q4eHdC13aiJh4VAQIGYORJupPtWIlGZ0e3iX2_LJv6IB29Nk21Nm_S9133vFeCCKhc17Di243K0mZDUFsKL7Ih4iguGmtOb847R2O1P2M2UT0twufbCKKVWxWeqYZqrf_lxgpk5KmsKIjzNcDZgkzPGeO7WWu-7lLpu4QEmLdEcdALfiBeuRaDTahTP_rhEZYUhvR0YfX49Lx15bGRp1MD3X8GM_x3eLtS_3HrW3RqH9qCkllXY_hY0WIWK4ZR5JHMNrsPJuBt0_ODK8q37zCSF633juTBkWmGSPOGDXCwtzWctP0uN7SHJ3qxAon5ZHcJeN-z07eIWBXvhtGhqa33RRnRRkkjLFXQ9JeaxQq2zWnLOkCJjKGIkkW7TWDJNEDwPpXIJQSkF3YfyMlmqA7A4dUSk8Yu2Y8q48iThmp9ElHJCpUedQ6iZSZm95DkZs2I-jv7uPoetfjgazoaD8e0xVMwi5YWEJ1BOXzN1qsE-jc5Wa_wBySamVQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+International+Conference+on+Robotics+and+Automation&rft.atitle=TUNERCAR%3A+A+Superoptimization+Toolchain+for+Autonomous+Racing&rft.au=O%27Kelly%2C+Matthew&rft.au=Zheng%2C+Hongrui&rft.au=Jain%2C+Achin&rft.au=Auckley%2C+Joseph&rft.date=2020-05-01&rft.pub=IEEE&rft.eissn=2577-087X&rft.spage=5356&rft.epage=5362&rft_id=info:doi/10.1109%2FICRA40945.2020.9197080&rft.externalDocID=9197080 |