TUNERCAR: A Superoptimization Toolchain for Autonomous Racing

TUNERCAR is a toolchain that jointly optimizes racing strategy, planning methods, control algorithms, and vehicle parameters for an autonomous racecar. In this paper, we detail the target hardware, software, simulators, and systems infrastructure for this toolchain. Our methodology employs a paralle...

Full description

Saved in:
Bibliographic Details
Published inProceedings - IEEE International Conference on Robotics and Automation pp. 5356 - 5362
Main Authors O'Kelly, Matthew, Zheng, Hongrui, Jain, Achin, Auckley, Joseph, Luong, Kim, Mangharam, Rahul
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2020
Subjects
Online AccessGet full text
ISSN2577-087X
DOI10.1109/ICRA40945.2020.9197080

Cover

Abstract TUNERCAR is a toolchain that jointly optimizes racing strategy, planning methods, control algorithms, and vehicle parameters for an autonomous racecar. In this paper, we detail the target hardware, software, simulators, and systems infrastructure for this toolchain. Our methodology employs a parallel implementation of CMA-ES which enables simulations to proceed 6 times faster than real-world rollouts. We show our approach can reduce the lap times in autonomous racing, given a fixed computational budget. For all tested tracks, our method provides the lowest lap time, and relative improvements in lap time between 7-21%. We demonstrate improvements over a naive random search method with equivalent computational budget of over 15 seconds/lap, and improvements over expert solutions of over 2 seconds/lap. We further compare the performance of our method against hand-tuned solutions submitted by over 30 international teams, comprised of graduate students working in the field of autonomous vehicles. Finally, we discuss the effectiveness of utilizing an online planning mechanism to reduce the reality gap between our simulation and actual tests.
AbstractList TUNERCAR is a toolchain that jointly optimizes racing strategy, planning methods, control algorithms, and vehicle parameters for an autonomous racecar. In this paper, we detail the target hardware, software, simulators, and systems infrastructure for this toolchain. Our methodology employs a parallel implementation of CMA-ES which enables simulations to proceed 6 times faster than real-world rollouts. We show our approach can reduce the lap times in autonomous racing, given a fixed computational budget. For all tested tracks, our method provides the lowest lap time, and relative improvements in lap time between 7-21%. We demonstrate improvements over a naive random search method with equivalent computational budget of over 15 seconds/lap, and improvements over expert solutions of over 2 seconds/lap. We further compare the performance of our method against hand-tuned solutions submitted by over 30 international teams, comprised of graduate students working in the field of autonomous vehicles. Finally, we discuss the effectiveness of utilizing an online planning mechanism to reduce the reality gap between our simulation and actual tests.
Author Jain, Achin
O'Kelly, Matthew
Auckley, Joseph
Zheng, Hongrui
Luong, Kim
Mangharam, Rahul
Author_xml – sequence: 1
  givenname: Matthew
  surname: O'Kelly
  fullname: O'Kelly, Matthew
  organization: University of Pennsylvania,Department of Electrical and Systems Engineering,Philadelphia,USA
– sequence: 2
  givenname: Hongrui
  surname: Zheng
  fullname: Zheng, Hongrui
  organization: University of Pennsylvania,Department of Electrical and Systems Engineering,Philadelphia,USA
– sequence: 3
  givenname: Achin
  surname: Jain
  fullname: Jain, Achin
  organization: University of Pennsylvania,Department of Electrical and Systems Engineering,Philadelphia,USA
– sequence: 4
  givenname: Joseph
  surname: Auckley
  fullname: Auckley, Joseph
  organization: University of Pennsylvania,Department of Electrical and Systems Engineering,Philadelphia,USA
– sequence: 5
  givenname: Kim
  surname: Luong
  fullname: Luong, Kim
  organization: University of Pennsylvania,Department of Electrical and Systems Engineering,Philadelphia,USA
– sequence: 6
  givenname: Rahul
  surname: Mangharam
  fullname: Mangharam, Rahul
  organization: University of Pennsylvania,Department of Electrical and Systems Engineering,Philadelphia,USA
BookMark eNotj8tKw0AUQEdRsKl-gSD5gcQ7j8xDcBFC1UJRiBHclenNREeamZLHQr9ewa7OWR04CTkLMThCbijklIK5XVd1KcCIImfAIDfUKNBwQhKqmKaKm0KdkgUrlMpAq_cLkozjFwBwLuWC3Ddvz6u6Kuu7tExf54Mb4mHyvf-xk48hbWLc46f1Ie3ikJbzFEPs4zymtUUfPi7JeWf3o7s6ckmah1VTPWWbl8d1VW4yz4BPmWBaI0q0dAdGolTOdK1DbQzYTiBHIdC0SHd_zlsrDFCl0DpJKVpr-JJc_2e9c257GHxvh-_t8ZT_AqCtSok
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICRA40945.2020.9197080
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISBN 1728173957
9781728173955
EISSN 2577-087X
EndPage 5362
ExternalDocumentID 9197080
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-4288cc6ca1b096c67e9fdec8990af4c3c44c9dc1b4c33da490177cae611caa93
IEDL.DBID RIE
IngestDate Wed Aug 27 02:32:30 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-4288cc6ca1b096c67e9fdec8990af4c3c44c9dc1b4c33da490177cae611caa93
PageCount 7
ParticipantIDs ieee_primary_9197080
PublicationCentury 2000
PublicationDate 2020-May
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-May
PublicationDecade 2020
PublicationTitle Proceedings - IEEE International Conference on Robotics and Automation
PublicationTitleAbbrev ICRA
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003366
Score 1.8814381
Snippet TUNERCAR is a toolchain that jointly optimizes racing strategy, planning methods, control algorithms, and vehicle parameters for an autonomous racecar. In this...
SourceID ieee
SourceType Publisher
StartPage 5356
SubjectTerms Hardware
Optimization
Planning
Robots
Sociology
Statistics
Vehicle dynamics
Title TUNERCAR: A Superoptimization Toolchain for Autonomous Racing
URI https://ieeexplore.ieee.org/document/9197080
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwHA3bTvOibhO_ycGj7ZamTRbBQxkbU9iQ2sFuI_k1w6G2ou3Fv96krfMDD95CoG1IIO-99PdeELqgmoGBHc_xWACOLyR1hODKUYTrQPhgOL0975jN2XTh3y6DZQNdbr0wWuuy-Ey7tln-y08yKOxRWV8QwQ3DaaImH7LKq7XddSllrHYAk4Ho34yi0EqXwEhAb-DWT_64QqVEkMkumn1-uyoceXSLXLnw_iuW8b-D20O9L68evtui0D5q6LSDdr7FDHZQ2zLKKpC5i67jxXwcjcLoCof4vrA54WbXeK7tmDjOsid4kJsUGzaLwyK3poeseMORBPOyHoon43g0deo7FJyNN6C5Y9TFEICBJMqIFWBci3WiwaisgVz7QMH3QSRAlGnTRPqGHnAOUjNCQEpBD1ArzVJ9iHBAPaEMetFhQv1Ac0kCw04UpQGhklPvCHXtpKxeqpSMVT0fx393n6C2XZiqdPAUtfLXQp8ZeM_VebmuHw1nowg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGP2CeBAvKmD87Q4eHdC13aiJh4VAQIGYORJupPtWIlGZ0e3iX2_LJv6IB29Nk21Nm_S9133vFeCCKhc17Di243K0mZDUFsKL7Ih4iguGmtOb847R2O1P2M2UT0twufbCKKVWxWeqYZqrf_lxgpk5KmsKIjzNcDZgkzPGeO7WWu-7lLpu4QEmLdEcdALfiBeuRaDTahTP_rhEZYUhvR0YfX49Lx15bGRp1MD3X8GM_x3eLtS_3HrW3RqH9qCkllXY_hY0WIWK4ZR5JHMNrsPJuBt0_ODK8q37zCSF633juTBkWmGSPOGDXCwtzWctP0uN7SHJ3qxAon5ZHcJeN-z07eIWBXvhtGhqa33RRnRRkkjLFXQ9JeaxQq2zWnLOkCJjKGIkkW7TWDJNEDwPpXIJQSkF3YfyMlmqA7A4dUSk8Yu2Y8q48iThmp9ElHJCpUedQ6iZSZm95DkZs2I-jv7uPoetfjgazoaD8e0xVMwi5YWEJ1BOXzN1qsE-jc5Wa_wBySamVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+International+Conference+on+Robotics+and+Automation&rft.atitle=TUNERCAR%3A+A+Superoptimization+Toolchain+for+Autonomous+Racing&rft.au=O%27Kelly%2C+Matthew&rft.au=Zheng%2C+Hongrui&rft.au=Jain%2C+Achin&rft.au=Auckley%2C+Joseph&rft.date=2020-05-01&rft.pub=IEEE&rft.eissn=2577-087X&rft.spage=5356&rft.epage=5362&rft_id=info:doi/10.1109%2FICRA40945.2020.9197080&rft.externalDocID=9197080