MEE : An Automatic Metric for Evaluation Using Embeddings for Machine Translation
We propose MEE, an approach for automatic Machine Translation (MT) evaluation which leverages the similarity between embeddings of words in candidate and reference sentences to assess translation quality. Unigrams are matched based on their surface forms, root forms and meanings which aids to captur...
Saved in:
Published in | 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA) pp. 292 - 299 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2020
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/DSAA49011.2020.00042 |
Cover
Abstract | We propose MEE, an approach for automatic Machine Translation (MT) evaluation which leverages the similarity between embeddings of words in candidate and reference sentences to assess translation quality. Unigrams are matched based on their surface forms, root forms and meanings which aids to capture lexical, morphological and semantic equivalence. We perform experiments for MT from English to four Indian Languages (Telugu, Marathi, Bengali and Hindi) on a robust dataset comprising simple and complex sentences with good and bad translations. Further, it is observed that the proposed metric correlates better with human judgements than the existing widely used metrics. |
---|---|
AbstractList | We propose MEE, an approach for automatic Machine Translation (MT) evaluation which leverages the similarity between embeddings of words in candidate and reference sentences to assess translation quality. Unigrams are matched based on their surface forms, root forms and meanings which aids to capture lexical, morphological and semantic equivalence. We perform experiments for MT from English to four Indian Languages (Telugu, Marathi, Bengali and Hindi) on a robust dataset comprising simple and complex sentences with good and bad translations. Further, it is observed that the proposed metric correlates better with human judgements than the existing widely used metrics. |
Author | Shrivastava, Manish Mukherjee, Ananya Sharma, Dipti Misra Ala, Hema |
Author_xml | – sequence: 1 givenname: Ananya surname: Mukherjee fullname: Mukherjee, Ananya email: ananya.mukherjee@research.iiit.ac.in organization: IIIT,Language Technology Research Centre,Hyderabad,India – sequence: 2 givenname: Hema surname: Ala fullname: Ala, Hema email: hema.ala@research.iiit.ac.in organization: IIIT,Language Technology Research Centre,Hyderabad,India – sequence: 3 givenname: Manish surname: Shrivastava fullname: Shrivastava, Manish email: m.srivastava@iiit.ac.in organization: IIIT,Language Technology Research Centre,Hyderabad,India – sequence: 4 givenname: Dipti Misra surname: Sharma fullname: Sharma, Dipti Misra email: dipti@iiit.ac.in organization: IIIT,Language Technology Research Centre,Hyderabad,India |
BookMark | eNotj81OwzAQhI0EB1p4Ajj4BRJ2bceOuUUl_EiNUNX2XDn1BiwlDkpSJN6eqHD6RjOjkWbBLmMfibF7hBQR7MPTtiiUBcRUgIAUAJS4YAs0IsdcgLbXbFOVJX_kReTFaeo7N4Ujr2gaZjT9wMtv155ms498P4b4wcuuJu9nNZ7zyh0_QyS-G1wc23Pxhl01rh3p9p9Ltn8ud6vXZP3-8rYq1kkQIKdEZrWXjaTaWNmoLBdGOwGOpCSFNTrvCLXNrDSNV5g5rXMkaTRYMEblXi7Z3d9uIKLD1xA6N_wcrNDzy0z-AmmFSr0 |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/DSAA49011.2020.00042 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1728182069 9781728182063 |
EndPage | 299 |
ExternalDocumentID | 9260045 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i203t-35bd3f3eb793f458276a20ae33e41b1adae1695937fd415a6681e3760907748d3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:36 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-35bd3f3eb793f458276a20ae33e41b1adae1695937fd415a6681e3760907748d3 |
PageCount | 8 |
ParticipantIDs | ieee_primary_9260045 |
PublicationCentury | 2000 |
PublicationDate | 2020-Oct. |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-Oct. |
PublicationDecade | 2020 |
PublicationTitle | 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA) |
PublicationTitleAbbrev | DSAA |
PublicationYear | 2020 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8479505 |
Snippet | We propose MEE, an approach for automatic Machine Translation (MT) evaluation which leverages the similarity between embeddings of words in candidate and... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 292 |
SubjectTerms | Automatic Metrics Conferences Data science Embeddings Frequency modulation Morphological Languages MT Evaluation Semantic Evaluation |
Title | MEE : An Automatic Metric for Evaluation Using Embeddings for Machine Translation |
URI | https://ieeexplore.ieee.org/document/9260045 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXi0W9O8po23oh1DqCg62G0kzSuI2Im0F_96k7ROFA9CDiE9JCSU7yXv-75HyIUEiLWIVRCKCgIAaQLFQAXahsbShIpxb5JU3InFEm5X8WpALrdaGET05DOcuq7P5ZtN2bqnspl0buoQD8kwSWSn1erVcCyUs5vHLAOnpLS3vij0NpzRj5opHjLmu6T4mqxjirxM20ZPy49fPoz_Xc0emXyL8-j9Fnb2yQDrMXko8pxe0aymWdtsvA0rLVyxrJLaqJTmW09v6jkCNH_VaHzayX8vPKUSqUeujh03Ict5_nS9CPpqCcFzFPIm4LE2vOKo7R9XuWxYIlQUKuQcgWmmjEImnA1xUhmL2kqIlKGjxNjrcQKp4QdkVG9qPCSU64rbyCo2AAmIyKQyNDJRtgErAdMjMnbbsX7rDDHW_U4c_z18QnbcgXQMuFMyat5bPLNI3uhzf4SfUeudNg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zHvSksom_zcGj3ZrmNW29Fe2Yug7FDXYbyfIKInYi7cW_3iSdE8WDkENJDi0J4Xuv7_u-R8hFAhAqEUrPFwV4AIn2JAPpKRMaJ9qXjDuTpHwshlO4m4WzFrlca2EQ0ZHPsGcfXS1fLxe1_VXWT6ybOoQbZDM0WUXUqLVWejjmJ_2bpzQFq6U0eV_gOyPO4EfXFAcagx2Sf72u4Yq89OpK9RYfv5wY__s9u6T7Lc-jD2vg2SMtLDvkMc8yekXTkqZ1tXRGrDS37bIW1MSlNFu7elPHEqDZq0LtCk9uPXekSqQOuxp-XJdMB9nkeuit-iV4z4HPK4-HSvOCozJ3rrD1sEjIwJfIOQJTTGqJTFgj4qjQBrelEDFDS4oxCXIEseb7pF0uSzwglKuCm9gq1AARiEDHia-TSJoBbAEYH5KO3Y75W2OJMV_txNHf0-dkazjJR_PR7fj-mGzbw2n4cCekXb3XeGpwvVJn7jg_AceIoIc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+IEEE+7th+International+Conference+on+Data+Science+and+Advanced+Analytics+%28DSAA%29&rft.atitle=MEE+%3A+An+Automatic+Metric+for+Evaluation+Using+Embeddings+for+Machine+Translation&rft.au=Mukherjee%2C+Ananya&rft.au=Ala%2C+Hema&rft.au=Shrivastava%2C+Manish&rft.au=Sharma%2C+Dipti+Misra&rft.date=2020-10-01&rft.pub=IEEE&rft.spage=292&rft.epage=299&rft_id=info:doi/10.1109%2FDSAA49011.2020.00042&rft.externalDocID=9260045 |